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We study the Fock quantization of scalar fields of Klein-Gordon type in nonstationary scenarios

propagating in spacetimes with compact spatial sections, allowing for different field descriptions that are

related by means of certain nonlocal linear canonical transformations that depend on time. More

specifically, we consider transformations that do not mix eigenmodes of the Laplace-Beltrami operator,

which are supposed to be dynamically decoupled. In addition, we assume that the canonical trans-

formations admit an asymptotic expansion for large eigenvalues (in norm) of the Laplace-Beltrami

operator in the form of a series of half integer powers. Canonical transformations of this kind are found in

the study of scalar perturbations in inflationary cosmologies, relating, for instance, the physical degrees of

freedom of these perturbations after gauge fixing with gauge-invariant canonical pairs of Bardeen

quantities. We characterize all possible transformations of this type and show that, independently of

the initial field description, the combined criterion of requiring (i) invariance of the vacuum under the

spatial symmetries and (ii) a unitary implementation of the dynamics leads to a unique equivalence

class of Fock quantizations, all of them related by unitary transformations. This conclusion provides

even further robustness to the validity of the proposed criterion, completing the results that have

already appeared in the literature about the uniqueness of the Fock quantization under changes of field

description when one permits exclusively local time-dependent canonical transformations that scale the

field configuration.
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I. INTRODUCTION

It is well known that the construction of a quantum
theory to describe a system which is totally characterized
classically is a process plagued with ambiguities, with
choices at various steps of the quantization procedure
that lead to different physical predictions. Even if the
classical system is identified with an algebra of functions
on phase space, constructed out of the set of elementary
variables that one had selected, distinct nonequivalent
quantum representations are generally possible. For
simple systems, a unique representation can be picked
out by imposing certain requirements, usually related
to symmetries of the system or to a good physical
(or mathematical) behavior of the representation. For
instance, in quantum mechanics, when only a finite num-
ber of degrees of freedoms are present, one can determine
a unique representation of the Weyl algebra (formed
with the exponentials of the position and momentum

variables, multiplied by imaginary numbers) by demand-
ing irreducibility, unitarity, and strong continuity of the
representation [1]. For fieldlike systems, the existence
of an infinite number of degrees of freedom makes the
situation much more intricate. This happens even for
fields with linear evolution equations, for which, after
writing the canonical commutation relations (CCRs) in
a way similar to that of the Weyl algebra, one can adopt a
representation of the Fock type [2], where one has a
notion of vacuum and particle at hand (not necessarily
well founded from a physical viewpoint, but rather
auxiliary in many situations). Generically, there exist
infinitely many Fock representations of the CCRs that
are not equivalent under unitary transformations [2]. In
these circumstances, one must call for additional criteria
to select a unique representation [3], up to unitary trans-
formations which do not affect the physical content.
When the field propagates in a highly symmetric space-
time, typically, the criterion consists of demanding that
all the quantization structures incorporate this symmetry,
like, e.g., with Poincaré symmetry in Minkowski space-
time [2]. But for generic curved spacetimes, no such
criterion exists.
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The loss of predictability owing to the persistence of
ambiguities is particularly relevant in the consideration
of cosmological settings, since one can only make obser-
vations in the Universe in which one lives, instead of
performing (an ideally infinitely) large number of
measurements to discern among potential candidates for
a quantum theory. Moreover, this problem is exacerbated in
cosmology by the obstructions to find windows for the
detection of quantum effects. For this kind of cosmological
situations, where fields propagate in nonstationary space-
times, a criterion has been proposed recently to pick
out a preferred unique class of Fock quantizations for
Klein-Gordon (KG) fields, assuming compact spatial
topology.1 This criterion consists in demanding that the
vacuum state be invariant under the spatial symmetries of
the system, complemented with the additional requirement
that the evolution admit a unitary implementation. The
criterion was introduced initially in the quantization of
Gowdy models [10–15] and then extended to KG fields
with time-dependent mass defined on the circle [16], on
the three-sphere [17–19], and finally on spatial manifolds
of arbitrary compact topology in three or less dimensions
[20,21]. This includes the physically relevant case of
compact sections with three-torus topology [22], with
applications to realistic models in cosmology, in accor-
dance with current observations of the Universe, which
favor spatial flatness [23].

In fact, the ambiguities that the proposed criterion has
been shown to resolve in the Fock quantization are so far of
two kinds [20,21]. On the one hand, once a canonical pair
is chosen for the scalar field, one finds the well known
ambiguity that we have commented about the choice of a
Fock representation of the CCRs. In more detail, let us
explain that the relevant information for the selection of a
Fock representation is captured in the choice of a complex
structure (CS). A CS is a real linear map J on phase space
whose square is minus the identity and which leaves in-
variant the symplectic structure, i.e., it is a symplectomor-
phism. Recall that the symplectic structure �ð�; �Þ is a
bilinear map on phase space [2] that determines the
CCRs.2 For the construction of a Fock representation,
one also requires that the CS be compatible with the
symplectic structure, in the sense that the combined map
�ðJ�; �Þ be positive definite. This condition allows one
to define an inner product on phase space, given by
½�ðJ�; �Þ � i�ð�; �Þ�=2. Starting then from the positive fre-
quency sector on this space, obtained with the projector
ð1� iJÞ=2, and completing it with the introduced inner
product, one arrives at the one-particle Hilbert space of the

theory. The Fock space is the direct sum of the symmetric
tensor products of this one-particle Hilbert space. The
proposed criterion removes the ambiguity inherent to the
choice of representation, selecting the class of unitary
equivalence which includes the CS J0 that would be natu-
rally associated with the case of a massless KG field.
On the other hand, in nonstationary scenarios, it is

natural to consider different field descriptions that are
related by a scaling of the field by a time-dependent
function. This scaling can be seen as part of a linear
canonical transformation, in which the field momentum
gets the inverse scaling, and, in addition, a contribution of
the field configuration can be added to the momentum,
with all the coefficients of the linear transformation
allowed to vary in time. This type of canonical transforma-
tion is local and changes the field dynamics, given its time
dependence. These scalings are often found in cosmology
(see, e.g., Ref. [24] for the typical scaling of cosmological
perturbations) and absorb part of the time variation of the
field, assigning it to the spacetime background. The sub-
sequent modification of the field dynamics explains why
the criterion of unitary implementation of the evolution
has different consequences in the distinct field descriptions
obtained in this manner. The result is that, together with the
invariance under the spatial symmetries, the requirement of
unitary evolution picks out a unique canonical pair for the
system among all those related by this family of local, time-
dependent linear canonical transformations [21].
For the discussion of these two types of ambiguities and

the application of the uniqueness results when the proposed
criterion is imposed, the starting point is that the field
system admits, with an appropriate choice of time and
after a suitable scaling, a formulation in terms of a KG
field’with a time-dependent mass sðtÞ that propagates in a
(n auxiliary) ultrastatic spacetime.3 Namely, the field equa-
tions can be written in the form

€’��’þ sðtÞ’ ¼ 0; (1.1)

together with a Hamiltonian equation for the momentum

p’ given by p’ ¼ ffiffiffi
h

p
_’. Here, the dot stands for the time

derivative, and � denotes the standard Laplace-Beltrami
(LB) operator associated with the spatial metric hij of the

background. The determinant of this spatial metric is
called h. The corresponding spatial sections are assumed
to have compact topology and dimension equal to d. When
d � 3, as we have mentioned, the criterion of a unitary
implementation of the evolution and of invariance under
the spatial symmetries selects the class of unitary equiva-
lence that includes J0 as the only valid CSs [20] and

1The spacetime where the field propagates may correspond to a
physical background [2,4], an effective background which incor-
porates some types of quantum corrections [5–8], or just an
auxiliary background that facilitates the field description [9–11].

2Loosely speaking, the symplectic structure encodes the in-
formation about the canonical Poisson brackets.

3Some mild conditions are imposed on the mass function sðtÞ
to reach the results of Refs. [20,21]. It suffices that this function
is twice differentiable in the considered time domain, with a
second derivative that is integrable in every compact time
subinterval.
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eliminates the ambiguity concerning the choice of field
description as far as time-dependent scalings of the field
configuration and linear redefinitions of the field momen-
tum are concerned [21].

In the context of cosmological perturbations in an infla-
tionary scenario, it has also been proven that the above
criterion guarantees the uniqueness of the Fock quantiza-
tion even if the field equations are modified with certain
kinds of subdominant terms. More explicitly, expanding
the field configuration and momentum in eigenmodes of
the LB operator, the KG field equations with time-varying
mass may present corrections that depend on the consid-
ered mode, but that vanish sufficiently fast in the ultraviolet
limit, i.e., for large eigenvalues (in norm) of the LB opera-
tor. These corrections include mode-dependent subdomi-
nant contributions, on the one hand to the time dependent
mass and, on the other hand, in the form of a damping term
[6]. In fact, the damping terms can be absorbed by means
of a suitable canonical transformation, which is nonethe-
less nonlocal [6]. The presence of these corrections does
not spoil the ability of the proposed criterion to pick out a
unique Fock quantization, showing that the results go
beyond the systems which admit a formulation precisely
as a KG field in an ultrastatic spacetime.

An important limitation of these uniqueness theorems is
that they only cover changes of field descriptions related by
local (linear) time-dependent canonical transformations. In
practical situations, at least in cosmological settings, one
decomposes the field in eigenmodes of the LB operator,
taking full advantage of the fact that these modes decouple
dynamically, and then introduces a CS by defining annihi-
lation and creationlike variables for each mode. This defi-
nition is often time-dependent because, in nonstationary
scenarios, the frequencies of the modes change. In order to
relate the choice of annihilation and creationlike variables
with that determined by the CS J0 in the field description in
which Eq. (1.1) applies, one needs to introduce a linear
canonical transformation that, in general, depends on the
considered mode. Besides, as we have said, the transfor-
mation is typically time dependent. What is no more true is
that the transformation is local, and, in particular, that it
amounts to a global scaling of the field when configura-
tions are considered. In order to analyze the extent to which
one can guarantee the uniqueness of the Fock quantum
theory, and discuss the validity of the criterion that we are
putting forward to deal as well with this generalized frame-
work and remove the subsequent ambiguity, we will study
in this work the effect in the quantization of canonical
transformations of the mentioned type. In doing so, we
will allow for the most general linear canonical transfor-
mation of that kind, without restricting the changes of field
configuration to be contact transformations that depend on
time (and on the considered mode) but, on the contrary,
permitting also the inclusion of contributions of the
momentum modes. Let us emphasize that, since these

time-varying linear canonical transformations are mode
dependent, they are generally nonlocal: inverse powers of
the LB eigenvalue are, in fact, obtained via the inversion of
the LB operator, which is a nonlocal operation.
Moreover, in principle, it is not clear if, starting with a

field description in which Eq. (1.1) is satisfied, one can
reach another description with a similar field equation
(maybe up to subdominant terms in the ultraviolet regime
for the mass and the damping) by means of a mode-
dependent canonical transformation of this sort. If this is
possible, one would find a potential tension in the real
implications of the results about the uniqueness of the
choice of Fock quantization; namely, those results would
provide a privileged Fock quantization for each of the
descriptions with field equations of the form (1.1), but their
relation being provided by nonlocal transformations, we
could not assure that such distinct quantizations are all
unitarily equivalent. If they were not, a new ambiguity
would arise in the selection of a Fock formulation.
Actually, a situation of this kind is found in the study of

scalar perturbations around Friedmann-Robertson-Walker
(FRW) spacetimes. These perturbations provide seeds
for the large scale structure and explain the origin of the
cosmic microwave background [24–26]. In order to cir-
cumvent the problems posed by gauge transformations, an
approach which is sometimes followed is to adopt a gauge,
e.g., the longitudinal one, and express the physical degrees
of freedom in terms of quantities defined in the system
with that gauge fixation. Knowing the effect of the gauge
transformations, these quantities can be reexpressed in any
other gauge. Another approach is to directly eliminate any
dependence on the choice of gauge by considering gauge-
invariant quantities, such as the Bardeen potentials [27]. In
Ref. [6], it was proven that a canonical pair for the descrip-
tion of the scalar cosmological perturbations was the
one formed by the energy density and the matter velocity
perturbations, which are Bardeen potentials [27]. In that
same work, it was shown that the change from the canoni-
cal pair that describes the perturbations in the longitudinal
gauge to this pair of gauge invariants is given, in fact, by a
time-dependent linear canonical transformation which is
mode dependent [6] and, hence, of the form that we are
going to analyze in the present article. For the scalar
perturbations, and up to subdominant terms in the ultra-
violet, the field equations turned out to be of the KG type
under discussion, both for the canonical pair chosen in the
longitudinal gauge and for the pair of Bardeen potentials.
In that particular case, it was proven also in Ref. [6] that the
two privileged Fock quantizations chosen by the criterion
of spatial symmetry invariance and unitary evolution when
studying, respectively, the gauge fixed system and the
gauge invariants, happened to be unitarily equivalent, pre-
serving in this way the uniqueness of the quantum theory,
up to unitary transformations. Nonetheless, it was far from
clear whether this was a result specific of the considered
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change or not and why a mode dependent canonical trans-
formation compatible with the mentioned criterion, like the
one encountered in the case of scalar perturbations, could
exist. In the light of the present work, these conclusions
for the model of scalar perturbations in cosmology are just
a particular application of more general results. The ex-
ample provided by this model is explained in detail in the
Appendix.

With these motivations, our work has a twofold aim.
On the one hand, we want to characterize the most general
mode- and time-dependent linear canonical transformation
that relates different field descriptions of the system
where a unitary implementation of the evolution is pos-
sible, while respecting the invariance under the spatial
symmetries. Note that it is for each of these descriptions
that the criterion that we put forward selects, respectively,
a privileged Fock quantization. On the other hand, we
will study then whether these privileged quantizations are
equivalent or not, by elucidating whether the canonical
transformation in question admits or not a unitary imple-
mentation. Our analysis will be restricted to canonical
transformations which preserve the mode decomposition
of the field in eigenfunctions of the LB operator, i.e., to
transformations which respect the dynamical decoupling
of these modes and do not mix them. In addition, we will
assume that the relations that provide the canonical trans-
formation admit an asymptotic expansion in the ultraviolet
sector in the form of a Laurent series of the square root of
(minus the) eigenvalue of the LB operator.

At this point of the discussion, it is worth recalling that a
linear canonical transformation T admits a unitary imple-
mentation in the representation determined by a CS J if
and only if the antilinear part of T, given by ðT þ JTJÞ=2,
is a Hilbert-Schmidt operator [28], i.e., the product of this
antilinear part by its adjoint has a finite trace. This condi-
tion is equivalent to the square summability of the beta
Bogoliubov coefficients. Recall also that these Bogoliubov
coefficients relate the annihilation and creationlike varia-
bles of the Fock representation with their images under the
considered transformation and that they are usually called
alpha and beta coefficients, depending on whether they
correspond to the linear or the antilinear part of the trans-
formation, respectively. Finally, let us remark that, from
a physical viewpoint, the square summability of the beta
coefficients is simply the condition that the particle pro-
duction under the analyzed transformation be finite,
namely, that the transformed vacuum have a finite number
of particles, if one employs the particle concept associated
with the original vacuum.

The rest of the paper is organized as follows. In Sec. II,
we will describe the system under study. The kind of non-
local, time-dependent linear canonical transformations that
we want to analyze will be introduced in Sec. III, inves-
tigating whether they can relate descriptions with field
equations of the KG type (1.1), up to certain subdominant

terms in the ultraviolet regime. In Sec. IV, we will
completely characterize the most general canonical trans-
formation with the desired properties and discuss its uni-
tary implementation in the original Fock quantum theory.
In addition, we will obtain the form of the subfamily of
canonical transformations that lead to KG field equations
without mode-dependent corrections to the mass term.
The conclusions will be presented in Sec. V. Finally, an
Appendix is included.

II. THE KLEIN-GORDON FIELD

Our starting point is a real KG field ’ with a time-
dependent mass, propagating in an ultrastatic spacetime
which is globally hyperbolic, of the form I��, where I is
a connected and not necessarily unbounded time interval
(if I is the union of several connected components, one can
restrict the discussion just to one of those components) and
� is a spatial manifold of compact topology. The spatial
sections, isomorphic to�, are equipped with the metric hij.

The field satisfies the dynamical equation (1.1). The
dynamical evolution is completed with the Hamiltonian
equation that identifies the field momentum p’ with the

time derivative of the field, densitized by a factor of
ffiffiffi
h

p
.

Notice that the system is not stationary, owing to the time
dependence of the mass, which can also be interpreted as a
quadratic potential term that varies in time. This kind of
KG equation can be obtained, e.g., from those of scalar
fields in nonstationary spacetimes by means of a scaling of
the field [18], as it is the case of test KG fields of constant
mass in FRW spacetimes.
The phase space can be obtained from the Cauchy data

at an arbitrary time t0 2 I: ð’; p’Þ ¼ ð’; ffiffiffi
h

p
_’Þjto . The

symplectic structure is that corresponding to the standard
Poisson brackets f’ðxÞ; p’ðyÞg ¼ �ðx� yÞ, where �ðxÞ is
the Dirac delta on �.
The criterion of invariance under the spatial symmetries

of the field equations4 and of a unitary dynamics selects a
unique class of unitary equivalence of CSs for the Fock
representation of the KG field [20]. This class of CSs is the
one which includes J0, namely, the CS that one would
naturally associate to the case of a massless field:

J0
’

p’

 !
¼ 0 �ð�h�Þ�1

2

ð�h�Þ12 0

 !
’

p’

 !
: (2.1)

Since J0 is constructed out of the LB operator, it is invari-
ant under the spatial symmetries and leads to a Fock
representation with the same property.

4One can take as the group G of such symmetries the maximal
subgroup of the unitary group of transformations which com-
mute with the LB operator. One can as well identify G with a
subgroup of the former maximal subgroup, provided that all its
corresponding irreducible representations differ [21].
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For convenience, we decompose the canonical pair of
field configuration and momentum in a mode expansion
using a basis of eigenfunctions of the LB operator (in the
Hilbert space of square integrable functions on � with the
volume element determined by the spatial metric). We will
call qnl the coefficients of the real modes in the expansion
of the field configuration ’ and pnl the corresponding
coefficients for the field momentum. The subindex n is a
positive integer that designates the eigenspaces of the LB
operator with different eigenvalue, �!2

n, according to the
ordering in the increasing sequence of positive numbers
f!ng, so that !n > !n0 if and only if n > n0. Note that the
compactness of the topology guarantees that the sequence
is discrete and also that the sequence tends always to
infinity when n ! 1. On the other hand, we suppose that
the zero modes of our field have already been removed, and
quantized by suitable methods in quantum mechanics, so
that we can ignore them in the following. Let us emphasize
that the removal of a finite number of degrees of freedom
does not modify the field behavior of the system nor the
issues related to the unitary implementation of the dynam-
ics owing to the existence of an infinite number of modes in
the ultraviolet sector (large !n). The degeneration gn of
each of the eigenspaces of the LB operator is taken into
account by the subindex l. For a fixed value of n, the index l
can only take a finite number of positive integer values,
namely, l ¼ 1; . . . ; gn. Finally, the Hamiltonian equation
for the time derivative of the field configuration translates,
after the mode expansion, into the equation pnl ¼ _qnl.

Substituting the mode expansion of the field in Eq. (1.1),
one gets that the real modes qnl satisfy the equations of
motion

€qnl þ ½!2
n þ sðtÞ�qnl ¼ 0: (2.2)

Clearly, the different modes decouple in the dynamics. It is
also obvious that this equation of motion is independent of
the label l and, therefore, all the modes in the same eigen-
space of the LB operator have the same dynamics. For the
sake of simplicity in the notation then, from now on, we
will obviate the degeneration label l in our equations,
unless it is necessary to avoid confusion.

III. TIME- AND MODE-DEPENDENT CANONICAL
TRANSFORMATIONS

As we have already mentioned in Sec. I, mode-
dependent linear canonical transformations that vary in
time appear naturally in quantum field theory in nonsta-
tionary spacetimes and, in particular, in its application to
cosmological perturbations. For instance, in the Appendix,
we discuss in detail the transformation of this kind
that relates the canonical pair of degrees of freedom that
describe scalar perturbations around a closed FRW uni-
verse in longitudinal gauge and the canonical pair of
Bardeen potentials which provide a gauge-invariant
formulation [6,27].

We are interested only in nonlocal canonical transfor-
mations that lead from a field description with equations of
motion of the form (2.2) to another field description whose
modes satisfy a similar equation, but now with a possibly
different time-dependent mass, which may include contri-
butions that depend on the considered mode but become
subdominant in the ultraviolet regime, i.e., when !n ! 1.
Specifically, we assume that the new mass is given by

MnðtÞ ¼ ~sðtÞ þOð!�1
n Þ; (3.1)

where ~sðtÞ is a mode-independent time function which
provides the ultraviolet limit. The criterion of spatial sym-
metry invariance and unitary evolution can be applied
to select a unique class of Fock representations for fields
that satisfy a KG equation with a mass term of the above
form [6].
Let us now discuss what kind of nonlocal and time-

dependent linear canonical transformation allows one to
pass from the original canonical pairs of modes ðqn; pnÞ,
subject to the equations of motion (2.2) and pn ¼ _qn, to a
new set of canonical modes ðQn; PnÞ, satisfying the same
equations of motion but now with a mass term supplied by
MnðtÞ instead of sðtÞ. As we have mentioned, we will only
consider canonical transformations that do not mix modes
(respecting their dynamical decoupling). Therefore, the
most general transformation that we are going to study is

Qn ¼ fnðtÞpn þ gnðtÞqn; (3.2)

Pn ¼ 1

gnðtÞ ½1� fnðtÞBnðtÞ�pn � BnðtÞqn; (3.3)

where fnðtÞ, gnðtÞ, and BnðtÞ are mode- and time-
dependent real functions. Nonetheless, BnðtÞ is completely
determined by fnðtÞ and gnðtÞ, via the imposition of
the Hamiltonian equations Pn ¼ _Qn. Thus, the canonical
transformations are characterized just by the functions
fnðtÞ and gnðtÞ. A simple calculation, employing the
dynamical equations of the original canonical pair and
the transformation maps (3.2) and (3.3), shows that the
Hamiltonian equation for _Qn implies that

BnðtÞ ¼ ½!2
n þ sðtÞ�fnðtÞ � _gnðtÞ

¼ 1� _fnðtÞgnðtÞ � g2nðtÞ
fnðtÞ : (3.4)

This expression not only determines BnðtÞ in terms of fnðtÞ
and gnðtÞ but also imposes a condition on these two func-
tions, given by the equality between the right terms in both
lines. An additional condition comes from the generalized
KG equation for Qn. It is not difficult to see (using again
the form of the canonical transformation and the original
field equations) that the only nontrivial requirement de-
rived from this condition refers to the modification of the
mass, which is given by
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MnðtÞ � sðtÞ ¼ fnðtÞ _sðtÞ þ 2 _fnðtÞ½!2
n þ sðtÞ� � €gnðtÞ

gnðtÞ
¼ �

€fnðtÞ þ 2 _gnðtÞ
fnðtÞ : (3.5)

In addition to the relation between the new and the original
mass functions,MnðtÞ and sðtÞ, again, the equality between
the right terms of both lines implies another condition on
the functions fnðtÞ and gnðtÞ. In fact, one can easily check
that this condition is not functionally independent of the
one derived from Eq. (3.4): the former can be obtained
from the latter by differentiation. Therefore, in the follow-
ing, we will only consider the condition arising from
formula (3.4). We can rewrite it in the form

_fnðtÞgnðtÞ � _gnðtÞfnðtÞ þ g2nðtÞ þ ½!2
n þ sðtÞ�f2nðtÞ ¼ 1:

(3.6)

As our first result, we are going to prove that it is
impossible that a canonical transformation of the consid-
ered type but limited to be mode independent—and, hence,
local—can relate two descriptions with dynamical equa-
tions of the specific form in which we are interested.
Suppose for a moment that fnðtÞ ¼ fðtÞ and gnðtÞ ¼ gðtÞ
are mode independent. It is easy to see then that the only
manner in which Eq. (3.6) may be satisfied is that fðtÞ ¼ 0,
for all t 2 I, because otherwise the only mode-dependent
contribution in that equation, !2

nf
2ðtÞ, will not cancel.

Now, if fðtÞ is the zero function, it follows from our
equation that gðtÞ ¼ �1 at all times, obtaining a trivial
canonical transformation that leads to the original field
equations and to the same canonical pair (up to a global
sign). Therefore, we are forced to consider functions fnðtÞ
and gnðtÞ that are mode- (and time-)dependent. Note that
this result is in complete agreement with that about the
uniqueness of the field description selected by our criterion
when only local time-dependent canonical transformations
are considered [21] (reducing just to a scaling, as far as the
field configuration is concerned). In Sec. IVB, we will
further study restriction (3.6), as well as the restrictions
arising from the behavior (3.1) that we have assumed for
the mode dependence of the new mass term.

IV. UNITARY IMPLEMENTATION AND
ASYMPTOTIC EXPANSION

Here, we will study the relationship between the Fock
representations determined by the CS J0 in the two field
descriptions under discussion: the initial one, with mode
variables ðqn; pnÞ, and the transformed one, with phase
space variables ðQn; PnÞ. We will also elaborate on the
condition for the unitary implementation of this canonical
transformation and, therefore, for the equivalence of the
considered Fock quantizations. Assuming the existence of
asymptotic expansions—in the form of Laurent series—in
!n when this quantity gets unboundedly large, we will

characterize the admissible canonical transformations—
i.e., those that satisfy Eq. (3.6) and lead to the desired
new mass term behavior—and show that all of them can
be implemented as unitary quantum transformations. We
conclude the section by analyzing the case in which the
new mass term is mode independent.

A. Beta coefficients of the transformation

Let us then consider, for the two field descriptions
related by the mode-dependent canonical transformation,
the Fock representation defined by J0 (2.1), which we know
is picked out (or rather its unitary equivalence class) by the
criterion of invariance under the spatial symmetries and the
unitary implementability of the dynamics. The following
are annihilation and creationlike variables associated with
the choice of J0 in the initial field description (in the sense
that the CS has a diagonal action on the basis formed
by them):

an ¼ 1ffiffiffiffiffiffiffiffiffi
2!n

p ð!nqn þ ipnÞ; (4.1)

a�n ¼ 1ffiffiffiffiffiffiffiffiffi
2!n

p ð!nqn � ipnÞ; (4.2)

where the symbol � denotes complex conjugation. The
corresponding variables for the transformed modes are
defined in a completely similar way, i.e.,

bn ¼ 1ffiffiffiffiffiffiffiffiffi
2!n

p ð!nQn þ iPnÞ; (4.3)

and b�n by the complex conjugate of this equation.
The relation between both sets of annihilation and cre-

ationlike variables is given by a Bogoliubov transformation
which, recalling that the modes do not mix, has the form

bn ¼ �nan þ �na
�
n; (4.4)

b�n ¼ ��
nan þ ��

na
�
n: (4.5)

Since the transformation is a symplectomorphism (i.e., it
preserves the canonical structure), the alpha and beta
functions satisfy the relation j�nj2 � j�nj2 ¼ 1 for all n 2
Nþ. As we have already mentioned, a linear canonical
transformation admits a unitary implementation in a given
Fock representation if and only if the beta functions of the
transformation are square summable. In this case, since we
want the canonical transformation to be unitary at all times,
the condition that must be satisfied isX

n;l

j�nlðtÞj2 ¼
X
n

gnj�nðtÞj2 <1 8 t 2 I; (4.6)

where we have taken into account the degeneration gn of
the eigenspaces of the LB operator. A direct calculation
leads to the expression of the beta coefficients, using in the
computations the form of the canonical transformation
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(3.2) and (3.3), the value of the functions BnðtÞ [given in the
first equality of Eq. (3.4)], the definitions of the two sets of
annihilation and creationlike variables, and relation (3.6).
The result is

�nðtÞ ¼ �
_fnðtÞ
2

� i

2!n

½fnðtÞsðtÞ � _gnðtÞ�: (4.7)

The asymptotic behavior of the degeneration gn for large
n is well known. The number of eigenstates whose eigen-
value is less than a positive number �!2 grows in d dimen-
sions at most like �!d [29]. Therefore, if, as in our case, one
assumes that the functions fnðtÞ and gnðtÞ (as well as their
derivatives) admit an asymptotic expansion in integer
powers of !n when this quantity tends to infinity, so that
the same applies to �nðtÞ, the square summability condi-
tion for unitary implementation turns out to be satisfied
in (all) spatial dimensions d not greater than three if
and only if the asymptotic behavior of the beta functions
is of the order �n �Oð!�2

n Þ. Considering the real and the
imaginary parts of the beta functions independently, we
conclude that

_fn �Oð!�2
n Þ; (4.8)

fnðtÞsðtÞ � _gnðtÞ �Oð!�1
n Þ: (4.9)

If these two conditions are fulfilled, then the studied Fock
quantizations, related by the transformations (3.2) and (3.3),
are unitarily equivalent.

B. Unitary implementation of the admissible
transformations

We will now investigate the properties of the admissible
canonical transformations, i.e., the mode-dependent trans-
formations defined by the sequences of functions fnðtÞ
and gnðtÞ that satisfy restriction (3.6) (so that the new
momentum modes equal the time derivatives of the new
configuration modes) and lead to a new mass MnðtÞ with
the behavior (3.1). We will see whether these admissible
canonical transformations fulfill the unitarity conditions
(4.8) and (4.9). Throughout our discussion, we will assume
that both fnðtÞ and gnðtÞ admit a Laurent series expansion
in the asymptotic limit !n ! 1.

Analyzing first restriction (3.6), it is not difficult to
realize that the term !2

nf
2
nðtÞ in that equation can only be

compensated in the asymptotic limit of infinitely large !n

by other terms if fnðtÞ �Oð!�r
n Þ with r 	 1. To see this,

let us divide the equation by f2n and defineGn ¼ gn=fn, for
convenience. The condition can then be rewritten as

� _Gn þG2
n þ!2

n þ sðtÞ ¼ 1

f2n
: (4.10)

Suppose then that we had r � 0. The only possibility to
compensate the term G2

n þ!2
n (notice that G

2
n is a positive

definite function, and !2
n is always positive as well) would

be that _Gn �Oð!2
nÞ.5 But, in that case, G2

n would be at
least of the order Oð!4

nÞ, and, therefore, it could not be
balanced with any other term in the equation, arriving at a
contradiction. Hence, as we anticipated, we necessarily
have fn �Oð!�r

n Þ with r 	 1.
One can then straightforwardly see from the dominant

term (for large !n) in Eq. (4.10) that Gn � f�1
n , and, thus,

gn �Oð1Þ. In addition, let us notice that, given the asymp-
totic behavior allowed for fn, condition (4.9) for the uni-
tary implementation of the transformation reduces to

_gn �Oð!�1
n Þ: (4.11)

Employing our conclusions about the dominant terms of
the (Laurent) series in integers powers of !n that provide
the asymptotic expansion of the functions fnðtÞ and gnðtÞ,
we get that

fnðtÞ ¼ cr
!r

n

þ X1
k¼rþ1

ck
!k

n

; (4.12)

gnðtÞ ¼ d0 þ
X1
k¼1

dk
!k

n

; (4.13)

with r 	 1 and where the c’s and d’s are time functions
(we obviate this time dependence in the notation for sim-
plicity). They are not fully free or independent, for they
must satisfy restriction (3.6). In particular, it is easy to
check from that restriction that the functions dkðtÞ must
vanish for 1 � k < r, because, otherwise, the term g2nðtÞ
would give contributions that could not be compensated in
the equation. On the other hand, the necessary and suffi-
cient conditions for a unitary implementation of the trans-
formation (in any possible spatial dimension not greater
than three), which are given by Eqs. (4.8) and (4.11),

amount to the requirements _c1 ¼ _d0 ¼ 0.
We will separate the rest of our analysis in two cases,

depending on whether the dominant power r for fnðtÞ is
equal to the unit or not. We will analyze first the case
r 	 2. Then, the condition _c1 ¼ 0 is immediately satisfied,
because c1 vanishes identically. Besides, the restriction
(3.6) existing on the functions of the transformation
implies that d20 ¼ 1, as one can easily see, and, conse-

quently, one gets that _d0 vanishes indeed. Therefore,
when r 	 2, the considered mode-dependent canonical
transformations can always be implemented as unitary
transformations in the original Fock representation deter-
mined by J0, and this quantization is unitarily equivalent to
the one obtained in the new field description.
Let us consider now the case r ¼ 1. From the first equal-

ity in Eq. (3.5), we obtain that the new mass is given by

5If _Gn were of asymptotic order Oð!N
n Þ with N > 2, then G2

n

would be of order Oð!2N
n Þ, and its contribution could not be

balanced. On the other hand, in the case N < 2, the term !2
n

could not be compensated.
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MnðtÞ � sðtÞ � 2 _d0
c1

!n � €c1 þ 2 _d1
c1

þ 2
c2 _d0
c21

þOð!�1
n Þ:

(4.14)

Hence, the restriction imposed on MnðtÞ that it must have a
well-defined ultraviolet limit [with possible subdominant

terms of order Oð!�1
n Þ] requires that _d0 ¼ 0, and so d0

must be a constant. On the other hand, restriction (3.6) on the
functions of the transformation imposes at dominant asymp-
totic order that d20 þ c21 ¼ 1, and, thus, c1 turns out to be a

constant function as well, so that, in particular, we have
_c1 ¼ 0. As a result, we conclude that Eqs. (4.8) and (4.11)
are satisfied, and all admissible canonical transformations
happen to admit a unitary implementation in the original
Fock quantization determined by J0. Therefore, as it occurs
as well for the other case r 	 2, the new Fock quantizations
are unitarily equivalent to the original one, and our criterion
of invariance under the spatial symmetries and of unitary
dynamics selects a unique Fock quantum theory for the KG
field, up to unitary transformations, as we wanted to prove.

C. Characterization of the admissible transformations

Let us elaborate on the characterization of the admis-
sible canonical transformations; in particular, let us discuss
in more detail their asymptotic behavior.

In the case r ¼ 1, we identify two distinct types
of transformations, namely, those with d0 � 0 and those
with d0 ¼ 0. A direct inspection shows that when the
considered transformations have d0 � 0, the modes of
the new field are proportional to the original modes in
the ultraviolet regime. Hence, both sets of modes have a
similar behavior. On the contrary, for transformations with
d0 ¼ 0, the modes of the new field are defined by linear
combinations which have a vanishing ultraviolet limit,
something which may seem surprising. This is compen-
sated by the behavior of the modes of the new momentum,
which blow up when !n goes to infinity. In the Appendix,
we will show that, in the context of cosmological pertur-
bations around closed FRW spacetimes, the transformation
between the canonical pair for scalar perturbations in the
longitudinal gauge and the corresponding pair of Bardeen
potentials is precisely a transformation with this behavior
[6]. For this kind of transformations with vanishing d0, it is
easy to check that restriction (3.6) requires that c2 ¼ 0.

In total, when r ¼ 1, the admissible canonical trans-
formations are determined by (i) functions of the form

fnðtÞ ¼ c1
!n

þ X1
k¼2

ckðtÞ
!k

n

; (4.15)

gnðtÞ ¼ d0 þ
X1
k¼1

dkðtÞ
!k

n

; (4.16)

with d0 and c1 being two nonvanishing constants that
satisfy d20 þ c21 ¼ 1, or (ii) by functions of the type

fnðtÞ ¼ � 1

!n

þ X1
k¼3

ckðtÞ
!k

n

; (4.17)

gnðtÞ ¼ d1ðtÞ
!n

þ X1
k¼2

dkðtÞ
!k

n

; (4.18)

when d0 ¼ 0.
For the sake of clarity, we have made explicit the time

dependence of the coefficients in the expansions. In both
cases, the asymptotic limit !n ! 1 of the new mass term

MnðtÞ is given by sðtÞ � 2 _d1ðtÞ=c1, so that, in general, the
mass is modified in this limit with respect to its value in the
original field description.
Finally, let us return to the case r 	 2. In this situation,

the admissible canonical transformations are determined
by functions

fnðtÞ ¼ crðtÞ
!r

n

þ X1
k¼rþ1

ckðtÞ
!k

n

; (4.19)

gnðtÞ ¼ �1þ X1
k¼r

dkðtÞ
!k

n

: (4.20)

Therefore, the configuration and momentum modes of the
new field description coincide (possibly, up to a sign) with
the original ones in the asymptotic limit. On the other hand,
the ultraviolet limit of the new mass term MnðtÞ is

sðtÞ � €crðtÞ þ 2 _drðtÞ
crðtÞ : (4.21)

Again, we see that the functions MnðtÞ are not only typi-
cally mode dependent, but their asymptotic limit differs
from the original mass sðtÞ, in general. In order that the
original mass be recovered in the limit of infinitely large
!n, it is necessary that d1 be a constant if r ¼ 1 and that

€cr ¼ �2 _dr in cases with r 	 2.

D. Transformations with mode-independent mass

We will now study the subclass of mode- and time-
dependent canonical transformations (of the form consid-
ered in Sec. IVC) which lead to a new field description
with a mode-independent mass, i.e., all the modes of the
new field evolve with the same mass term. To emphasize
this fact, we will write MnðtÞ ¼ MðtÞ. Recalling relation
(3.5), we conclude that the functions gnðtÞ must satisfy the
restriction

gnðtÞ ¼ � 1

2
_fnðtÞ þ 1

2

Z t
Sð�tÞfnð�tÞd�t; (4.22)

where SðtÞ ¼ sðtÞ �MðtÞ is the difference between the
original and the new mass functions, and a global integra-
tion constant has been absorbed, letting unspecified the
initial time in the last integration. Thus, the functions gnðtÞ
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are completely determined (up to time constants that may
depend on the mode) by the functions fnðtÞ and by the
difference between the two considered mass functions.
Using the above expression for gnðtÞ, the restriction (3.6)
on the functions that determine the canonical transforma-
tion becomes

� 1

4
_f2nðtÞ þ 1

2
€fnðtÞfnðtÞ þ 1

4

�Z t
Sð�tÞfnð�tÞd�t

�
2

þ ½!2
n þ �sðtÞ�f2nðtÞ ¼ 1: (4.23)

Here, �sðtÞ ¼ ½sðtÞ þMðtÞ�=2.
If one substitutes the asymptotic expansion of fnðtÞ as a

Laurent series, and allows for a change of order between
the infinite sum in this expansion and the integral in
expression (4.23), one gets from that equality a hierarchy
of differential equations that allow one to obtain the coef-
ficients of the series for fnðtÞ by a recursive process,
starting from the dominant contributions in the limit
!n ! 1 and descending in the sequence of negative inte-
ger powers of !n. At each step in this hierarchy, new
integration constants appear, permitting some freedom in
the choice of coefficients for the transformation.

A case in which we are particularly interested is when
the transformation does not affect the mass, which
becomes then not only mode independent but besides
coincides in the original and the new field descriptions.
In this situation, SðtÞ vanishes, and �sðtÞ ¼ sðtÞ. It then

follows that gnðtÞ ¼ Kn � _fnðtÞ=2, where Kn is a time
constant which depends on the mode. Given the asymptotic
behavior of the functions gnðtÞ and fnðtÞ, the constants Kn

must have the form

Kn ¼ �0 þ
X1
k¼1

�k

!k
n

; (4.24)

where the �’s are real numbers. The expression of the
functions fnðtÞ can be determined by replacing them with
their asymptotic expansion in terms of a Laurent series in
Eq. (4.23), particularized to the data SðtÞ ¼ 0, following
then the procedure explained above. As we have com-
mented, solutions can always be found by means of a
recursive process, at least at a formal level.

V. CONCLUSIONS

We have studied time-dependent linear canonical trans-
formations of a certain nonlocal class for scalar fields in
(generically) nonstationary spacetimes with compact spa-
tial sections. These time-dependent transformations absorb
part of the field dynamics in functions of the background.
More specifically, the class of transformations that we have
studied relate alternate field descriptions in which the
equations of motion take the form of a KG equation in
an auxiliary, ultrastatic spacetime, but provided with a
time dependent mass. We have allowed for subdominant

corrections to this field equation in the ultraviolet sector,
corresponding to modes with a large eigenvalue (in norm)
of the LB operator. The dynamics are completed with the
Hamiltonian equation that relates the field configuration
and its momentum.We have restricted our discussion to the
case in which this latter equation equals the time derivative
of the configuration modes with the modes of the momen-
tum, in all of the considered field descriptions. Besides,
using the decomposition of the field provided by the
eigenfunctions of the LB operator, the possible nonlocality
of the analyzed canonical transformations consists in a
dependence on the mode under consideration, but respect-
ing the dynamical decoupling between those modes.
For the type of equations of motion that we have per-

mitted, it is known that the criterion of (i) invariance of
the vacuum under the spatial symmetries of the dynamics
and (ii) existence of a unitary implementation for the
evolution selects a unique class of unitary equivalence
for the Fock representations of the CCRs in each of the
descriptions related by our canonical transformations. This
equivalence class contains the representation determined
by the CS which would be natural to associate with the case
of a free massless scalar field [6,20]. Moreover, the above
criterion fixes as well the choice of canonical pair for the
field up to local linear canonical transformations that vary
in time and, when reduced to its action on the field con-
figuration, amount just to a scaling [6,21]. Our discussion
can be viewed as an extension of these uniqueness results
by allowing that (a) the time-dependent change in the
field configuration includes contributions of the field mo-
mentum, and (b) the canonical transformation becomes
mode dependent and, hence, nonlocal. In this work, we
have, nonetheless, imposed two restrictions on the kind of
considered canonical transformations. On the one hand, as
we have commented, they must be compatible with the
evolution in the sense that they do not mix different modes
of the LB operator (which do not interact dynamically).
For that, in particular, they must have the same form in
each of the eigenspaces of that operator (since the dynam-
ics is the same for all degenerate modes). On the other
hand, we have assumed that the functions that determine
the canonical transformation admit an asymptotic expan-
sion in the ultraviolet sector in the form of a Laurent series
of !n (the square root of the norm of the LB eigenvalue).
We have studied first whether this type of nonlocal and

time-dependent canonical transformations that connect
different descriptions with the same kind of dynamical
equations exists or not. We have proven that they do exist,
in fact, and that they are necessarily mode dependent, so
that no local transformation can ever have the required
properties. In the two descriptions related by each of these
canonical transformations, a privileged Fock quantization
is selected by the criterion of unitary evolution and invari-
ance under the spatial symmetries. Then, the question
arises of whether these alternate quantizations are in fact
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equivalent, or whether a new ambiguity appears which
affects the physics in the quantum realm and which is not
removed by the proposed criterion. The question can be
rephrased by asking whether the considered canonical
transformations admit a unitary implementation or not.
We have demonstrated that all the studied nonlocal canoni-
cal transformations are actually implementable as unitary
ones, therefore guaranteeing the uniqueness of the Fock
quantum theory picked out by the criterion that we have
put forward. This shows the consistency of this criterion
and provides further robustness to the selected quantum
theory and its physical predictions, beyond the uniqueness
results which were already available in the literature
[20,21]. Finally, we have analyzed in more detail the
specific case in which the time-dependent mass is not
corrected by mode-dependent subdominant contributions,
both in the original and the transformed field descriptions.
We have seen that transformations of this type are gener-
ally possible and have formulated the condition that this
subfamily of canonical transformations must satisfy.

It is worth noting that this kind of nonlocal transforma-
tion appears in cosmological perturbation theory, relating
the description of scalar perturbations around FRW closed
spacetimes in longitudinal gauge, e.g., and in terms of
gauge invariants, as was shown in Ref. [6], and we sum-
marize in the Appendix. To conclude, let us also point out
that the results presented in this work seem to admit
extensions and further applications in the case of fermionic
fields, where this kind of nonlocal transformations may
be especially important. For instance, Ref. [30] analyzes a
quantum model containing fermionic fields with finite
particle creation in the evolution or, equivalently, with a
unitarily implementable dynamics. To arrive at such a
unitary dynamics for the model, it is necessary to define
suitable annihilation and creationlike variables by using
(nonlocal) mode- and time-dependent canonical transfor-
mations with respect to the original description of the
fermionic fields. Therefore, our analysis and conclusions
may also find important applications in the process of
reaching a Fock quantization for fermions with the
required good properties of symmetry and unitarity, as
well as to ensure the uniqueness (modulo unitary trans-
formations) of such a quantum theory.
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APPENDIX: MODE-DEPENDENT
TRANSFORMATIONS IN COSMOLOGICAL

PERTURBATIONS

In this Appendix, we will consider the application of our
discussion to the analysis of scalar perturbations in cos-
mology [6]. In more detail, the cosmological system that
we will discuss is an FRW spacetime with closed spatial
sections that have the topology of a three-sphere. The
matter content is given by a minimally coupled scalar field

of mass ~m ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�=2G

p
. Starting with a homogeneous

setting, one can consider the perturbations around those
FRW solutions [31], restricting the attention just to scalar
perturbations for simplicity [6]. This restriction is possible
because the scalar, vector, and tensor perturbations de-
couple in the evolution at the dominant perturbative order
in which one truncates the system [31]. The expansion of
the perturbations in modes is made using hyperspherical
harmonics [31], which are eigenfunctions of the LB opera-
tor on the three-sphere. The nonphysical degrees of free-
dom can be eliminated, e.g., by adopting a longitudinal
gauge. After this gauge fixing, the sector of homogeneous
solutions can be described by two canonical pairs, e.g., the
pairs ð�;��Þ and ð �’;� �’Þ, used in Ref. [6], where � is

related to the FRW scale factor a and �’ is essentially the
homogeneous mode of the scalar matter field [32]. On the
other hand, the scalar perturbations can be described in this
gauge fixed model by the set of configuration and momen-
tum pairs ðhn~l; �n~lÞ, obtained from the mode expansion of

the scalar field and its momentum after a scaling of the
former by a factor of a (see, e.g., Refs. [24,31]). The index
n is a positive integer such that n > 1 and labels the
eigenspaces of the LB operator on the three-sphere con-
tributing with inhomogeneous physical degrees of freedom
to the perturbations, with a corresponding eigenvalue that
(after a flip of sign) is equal to !2

n ¼ nðnþ 2Þ [32]. The
degeneration index ~l, on the other hand, stands for the pairs
of integers ðl; mÞ that designate the different hyperspherical
harmonics with the same value of n. Their ranges are
0 � l � n and �l � m � l.
The equations of motion that the inhomogeneous modes

satisfy in the longitudinal gauge have the form

€hn þ rnðtÞ _hn þ ½!2
n þ snðtÞ�hn ¼ 0: (A1)

We obviate the degeneration label ~l because the dynamical
evolution is independent of it. The dot stands here for the
derivative with respect to the conformal time t, and the
functions rnðtÞ and snðtÞ are mode and time dependent:

rnðtÞ ¼ 2An~g
2
n; (A2)

snðtÞ ¼ ~sðtÞ þOð!�2
n Þ; (A3)

where ~sðtÞ is a function that only depends on time, whereas
An and ~g2n depend also on the considered mode:
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An ¼ 3

!2
n � 3

e�6�� �’ð2��� �’ � e6�m2 �’Þ; (A4)

~g2n ¼
�
1� 3

!2
n � 3

e�4��2
�’

��1
: (A5)

Notice that An ¼ Oð!�2
n Þ while ~g2n ¼ 1þOð!�2

n Þ. It then
follows that rnðtÞ is of the orderOð!�2

n Þ. In Ref. [6], it was
proven that the criterion of spatial symmetry invariance
and unitary evolution selects a unique Fock quantization
even in this situation, with the KG equation modified by
subdominant terms of the above form.6 The Fock repre-
sentation that is picked out belongs to the unitary equiva-
lence class of that determined by the CS J0. It is
also possible to obtain an alternate description where the
damping term vanishes by considering a mode-dependent
canonical transformation that eliminates the contribution
of rnðtÞ:

�hn ¼ ~gnhn; (A6)

��n ¼ 1

~gn
�n þ ð~gnAn þ _~gnÞhn: (A7)

Again, we have ignored the degeneration index in the
canonical variables, since the transformation is indepen-
dent of it. With this canonical transformation, snðtÞ does
not change up to order !�2

n and, hence, continues to be
given by Eq. (A3). In addition, a contribution of the con-
figuration modes has been included in the definition of the
new momentummodes so that they satisfy the Hamiltonian

equation ��n ¼ _�hn. Therefore, the dynamical equations in
this new field description are completely adapted to the
form that is considered in the main text of this work.

Alternatively, in the study of cosmological perturba-
tions, it is most common to use gauge-invariant quantities
to describe the system. A canonical pair of gauge-invariant
scalar quantities can be constructed from the original
variables ð�n; hnÞ by a time-dependent linear canonical
transformation that depends on the specific mode under
consideration but does not mix those modes:

�n ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

n � 3
p ð�n þ �hnÞ; (A8)

�n ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

n � 3
p ½��n þ ð�2 �!2

n þ 3Þhn�: (A9)

We have ignored again the degeneration index on the mode
variables because the transformation has no dependence on
it. The function � varies in time and is defined in terms of
background variables. It is mode independent and can be
related with An and gn by the identity

� ¼ e�2�

� �’

ð2��� �’ � e6�m2 �’Þ (A10)

¼ An~g
2
n

1� ~g2n
: (A11)

The above pair of canonical gauge-invariant quantities
are linear combinations (depending on the background
variables; see Ref. [6] for details) of the energy density
and matter velocity perturbations introduced by Bardeen
[27]. Their equations of motions are

€�n þ ½!2
n þ sðtÞ��n ¼ 0; (A12)

and �n ¼ _�n, up to the perturbation order in which the
theory is being truncated. Note that these equations are
precisely of the form introduced in Sec. II. Combining the
canonical transformation given by Eqs. (A6) and (A7) with
the transformation introduced in Eqs. (A8) and (A9), it is
easy to obtain the mode- and time-dependent canonical
transformation that relates the gauge invariants ð�n;�nÞ
with the variables ð �hn; ��nÞ, for all values of n. The trans-
formation is

�hn ¼ ~gnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

n � 3
p ð��n þ ��nÞ; (A13)

��n ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

n � 3
p ð�~gn þ _~gnÞ�n

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

n � 3
p �

!2
n � 3

~gn
� �2~gn � � _~gn

�
�n: (A14)

Using expression (A10), and in particular that � is a mode-
independent time function, one can check that the func-
tions fnðtÞ and gnðtÞ that characterize the mode-dependent
and time-dependent canonical transformation under con-
sideration are

fn ¼ �gn� ¼ � ~gn
~!n

(A15)


 � 1

~!n

� 3

2 ~!3
n

e�4��2
�’ þOð ~!�5

n Þ: (A16)

Here, we have redefined ~!2
n ¼ !2

n � 3. In the light of the
analysis performed in Sec. IVC, this transformation is of
the type given in expression (4.17), where the coefficients
of the linear combinations that provide the new configura-
tion modes vanish in the ultraviolet limit, while the
coefficients of the new momentum modes blow up. As a
corollary, the transformation admits a unitary implementa-
tion in the Fock representation determined by J0 in the
gauge-invariant description, and, hence, the quantization
reached in the longitudinal gauge is unitarily equivalent.

6Actually, the proof is valid for more general types of mod-
ifications, like, e.g., for corrections to the mass function of order
Oð!�1

n Þ, as in Eq. (3.1).
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