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In the context of quintessence and Brans-Dicke models we confront the predictions for the expan-
sion history and the matter growth rate with updated measurements of the luminosity distance from
supernovae type Ia, angular distance from CMB and galaxy power spectra from several datasets.
The use of measurements not only sensitive to the expansion history but to the growth of pertur-
bations enables to break the usual degeneracy of such models with the cosmological Concordance
ΛCDM model. Using the Effective Field Theory formalism for Dark Energy, we obtain the confi-
dence regions from the three datasets in the parameters planes and compare the models predictions
with dark energy models with constant equation of state.
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I. INTRODUCTION

The epistemological and observational limitations
faced by the cosmological concordance ΛCDM model
have led the scientific community to suggest a plethora
of alternative theories. Aiming to account for the current
accelerated phase experienced by the Universe, one broad
line of reasoning consists of using gravitational actions
beyond the standard Einstein-Hilbert plus a cosmologi-
cal constant. In this sense, a popular line of reasoning
consists of modifying the concordance model avoiding a
full modification of the field equations and thus the re-
sulting theories remain inside the Einstein gravity frame-
work. The price to pay consists of assuming the presence
of a new component dubbed dark energy (DE) [1], where
a possible time (or equivalently redshift) evolution in its
energy density is encoded in the equation of state. This
is the case of the ωCDM where the dark energy equation
of state is constant but different from −1, scalar fields
with non-canonical kinetic terms (k-essence) [2], Chap-
lygin gas model [3] and extra dimensional theories [4]
among others. One of the most popular attempts herein
has been the so-called Quintessence models [5] where a
minimally coupled evolving scalar field plays the role of
the dark energy component. The minimal coupling in
Quintessence models [6, 7] makes them attractive since
the interpretation of the scalar field as resulting from
a new cosmological fluid is thus neatly transparent and
non-minimal couplings are not required. We shall analyze
two Quintessence models: the first will be the so-called
Inverse Power-Law model (IPL) [8] characterized by a
potential of the form 1/φα and a set of three parame-
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ters being only two of them independent. The IPL scalar
field has attractor-like solution, i.e., for a large range of
initial conditions it always converges to the same evo-
lution. This happens in the tracker regime, when the
model presents a ωCDM behavior. The second model to
be considered is the Double Exponential Potential model
(2EP) [9] which exhibits a scaling behavior and whose
potential is defined with two exponentials. The 2EP is
thence characterized by four parameters, being only three
of them independent and two of them also constrained by
Nucleosynthesis [9], as it is detailed in following sections.

In addition, a complementary set-up, instead of
introducing a new fluid driving the acceleration, consists
of obtaining this effect directly from the geometric part
of the field equations (c.f. [10] for thorough reviews),
giving rise to different modified - or extended - gravity
theories. In this way DE can be thought of as having
a geometrical origin, rather than being attributed to
the vacuum energy or additional scalar fields which are
added by hand to the stress-energy tensor. Paradigmatic
examples of geometrical modifications of the gravita-
tional interaction are the scalar-tensor theories in which
a scalar field supplements the standard Einstein-Hilbert
Lagrangian [11]. Theoretical arguments supporting the
need of scalar-tensor theories rely, among others, in the
fact that scalar partners of the graviton naturally arise
in most attempts to quantise gravity or unify it with
other interactions. Thus, one of the earliest attempts
developing an alternative to General Relativity (GR) was
done by Brans and Dicke and was indeed in connection
with some previous work of Jordan and Fierz [12]. This
theory is usually referred to as Jordan-Fierz-Brans-Dicke
theory, or also Brans-Dicke theory (BD) (see [13] for a
recent review).

In order to constrain the validity of any cosmologi-
cal theory, studies have usually considered observations



which are only sensitive to the expansion history, for in-
stance through SNIa, BAO and CMB data. However
the use of large-scale observations, such as the aforemen-
tioned, which solely depend on the expansion history of
the Universe might be not enough to determine uniquely
either the nature nor the origin of the mechanism res-
ponsible for the late-time acceleration. In other words,
cosmological evolutions from different theories can fit the
expansion history data with comparable quality, which
is usually referred to as the degeneracy problem. In or-
der to circumvent this degeneracy, one requires the use
of measurements not only sensitive to the cosmological
expansion but, for instance, to the growth of structures
derived from the evolution of scalar perturbations [15] or
other astrophysical and cosmological tests, such as the
existence of GR-predicted astrophysical objects, or the
evolution of the CMB tensor perturbations [16].

In this investigation we have thus focused our attention
in combining constraints coming from SNIa and CMB
data with the matter growth rate behavior for Brans-
Dicke theories as well as Quintessence-like scalar fields.
The theoretical predictions of these theories will be con-
fronted with SNIa [29], CMB [30] and a large variety
of dark energy surveys providing galaxy power spectra
data, namely THF [17], DNM [18], 6Degree Field Galaxy
Survey 6dFGS [19], 2 degree Field Galaxy Red Survey
(2dFGRS) [20, 21], 2SLAQ [22], Sloan Digital Sky Sur-
vey Luminous Red Galaxies SDSS LRG [23, 24], the
Baryon Oscillation Spectroscopic survey BOSS [25], Wig-
gleZ [26] VIMOS-VLT Deep Survey VVDS [21, 27] and
VIPERS [28] datasets. From these dark energy surveys,
we are interested in the growth structure function, i.e.,
f(z)σ8,0δ(z), where δ holds for the matter density con-
trast, f(z) ≡ dlnδ

dlna represents the growth rate as a func-
tion of the redshift, σ8,0 ≡ 0.8 by convention (it splits up
the linear from the non-linear regime at scales 8Mpc h−1)
and σ8,0δ(z) ≡ σ8(z) is the amplitude of the power spec-
trum of the density perturbations. Previous literature
have proposed an approximation to the growth rate in
terms of a set of the so-called growth index parameters
[31]. Other attempts have tried to encode all the in-
formation about the perturbation sector using a single
scalar quantity, the so-called growth parameter, which
can be constrained with observational data [31]. Also,
inspired by the behaviour fourth-order gravity models
in the quasi-static limit, the two gravitational potentials
were parameterized in terms of a time and scale- depen-
dent Newton’s constant and the so-called gravitational
slip [32]. Under this assumption numerical codes comput-
ing the growth of cosmological perturbations have been
implemented, such as MGCAMB [33] and more recently
CLASSgal [34] are available depending on the chosen pa-
rameterisation. However, in order to represent a useful
tool to constrain theories and models therein, the growth
parameter must be sufficiently precise. Therefore, solv-
ing the linear perturbations equations with no sort of

approximation can be more accurate and revealing. This
is in fact the strategy to be pursued in this investigation.

In order to perform the calculations on both cosmo-
logical background and first order (scalar perturbations)
equations we shall use the formalism of Effective Field
Theory (EFT) of DE since it provides a well-defined
framework with a large classification of theories. It also
allows to identify them easily and have the possible in-
stabilities under control. EFT of DE was proposed as
a universal description of DE modified gravity theories
[7, 35–39] extending a formalism previously applied to
inflation [40]. Therein, the metric is considered to be uni-
versally coupled to matter fields, hence one can write the
most general unitary gauge action compatible with the
residual unbroken symmetries of spatial diffeomorphisms.
EFT can also be applied to cosmological perturbations by
treating them as Goldstone bosons of spontaneously bro-
ken time-translations. The operators can be organized in
powers of the number of perturbations, hence those be-
yond the linear order do not affect the background evo-
lution. Besides, the terms in the expansion have direct
observable implications. The main advantage of the EFT
lies in the transparent manner of classifying large classes
of theories by gathering them within the same formal-
ism. This allows us to study not only model-by-model
features, but classes of models at once. For instance, one
can narrow down theories fulfilling stability conditions
for the desired range of parameters values which deter-
mine the quoted structural functions and drop out those
which does not. Once this is done, one can focus on
specific models to be studied in detail. In the following,
we shall present the rudiments of this formalism in both
background and scalar perturbations evolutions.

This paper is organized as follows: in Section II we
present a a brief review of the main features of the EFT
formalism for both background and perturbation sectors.
Then Section III revises the main properties for the afore-
mentioned Quintessence models as well as for the Brans-
Dicke theories, making explicit the evolution and den-
sity contrast equations. Section IV is then devoted to
computing the luminosity and angular distances and the
growth rate of density contrast. Therein we shall per-
form the corresponding cosmological fits for every model
under consideration by making use of χ2 analyses. Then
in Section V we shall present the confidence regions for
the pertinent spaces of parameters in the models under
study. Finally, in Section VII we present the conclusions
of the investigation.

Unless otherwise specified, greek indices run from 0 to
3. The symbol ∇ represents the usual covariant deriva-
tive and we use the (−,+,+,+) signature.
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II. EFT FORMALISM FOR BACKGROUND
AND PERTURBATION SECTORS

This section is devoted to provide a brief review of the
theoretical aspects of EFT of DE, namely the introduc-
tion of the EFT action, the convenience of working in the
unitary gauge and the equations for the relevant sectors.
Further details are provided in references [35, 36].

Action

The use of the unitary gauge allows us to express the
action only in terms of the metric tensor and its deriva-
tives. This happens since the scalar field is taken as the
time coordinate while the spatial coordinates remain un-
fixed (see [36] for a more exhaustive reading). The low
energy spectrum and the dynamics are described in a
general way, regardless of higher energy levels of the the-
ory. Besides, the spontaneous breaking of a global sym-
metry is considered. Thus the Lagrangian is written in
the unitary gauge (such that it is invariant under the un-
broken symmetries but non-invariant under the broken
symmetries). Furthermore, the diffeomorphism invari-
ance is restored by the so-called Stückelberg mechanism
which is nothing but the imposition of a time coordinate
transformation on the action (since the time is fixed by
applying the unitary gauge), i.e., t→ t+ π(xµ) [35, 36].

In a general perturbed RW spacetime, the perturbed
scalar field takes the form φ(t, ~x) = φ0(t) + δφ(t, ~x), but
since t = t(φ) by applying the unitary gauge δφ = 0.
Moreover, every φ = const defines a time slicing, so that
one can build the action with the unit vector nµ orthog-
onal to such a slicing, regardless of the scalar φ,

nµ ≡ −
∂µφ√
−(∂φ)2

→ −
δ0µ√
|g00|

(1)

this means that besides any curvature invariant such as
the Ricci scalar R, also contractions of tensors with free
upper 0 indices (e.g. g00, R00, etc.) with nµ are allowed.
Furthermore, coefficients which multiply the operators in
the action are allowed to be time dependent because time
translations are broken. Moreover, covariant derivatives
of the unit defined by φ = const. are used to express the
operators. In an equivalent manner, projection orthogo-
nal to φ = const. or t = const. surfaces can be used, so
that the extrinsic curvature becomes

Kµν ≡ hσµ∇σnν , (2)

where hµν ≡ gµν + nµnν is the so-called induced spatial
metric.

It is worth noting that EFT of inflation is nothing but
the propagation of a scalar degree of freedom on a general

Theory µ = dlog(M2(t))
dt

λ(t) C(t) µ2
2(t) µ3(t) ε4(t)

ΛCDM 0 const 0 0 0 0
Quintessence 0 X X 0 0 0
ωCDM 0 X 0 0 0 0
JFBD X X X 0 0 0

Table I: Parameterizations for ΛCDM, Quintessence, ωCDM
and JFBD theories using the Effective field theory formalism.
The pragmatic reader should take this table and use it as a
recipe, applying it directly to the desired theory or model. A
more detailed table can be found in [41, 42].

RW background for which time translations are unbro-
ken [40]. In order to extend the EFT formalism from
inflation to late-time cosmology, i.e., EFT of DE, matter
fields must be taken into account (e.g. dark matter, ra-
diation, etc.). Therefore, for the matter sector the weak
equivalence principle is assumed to be valid, hence mat-
ter fields couple to the metric through a covariant action
and working within the Jordan frame turns out to be
more advantageous.

Thus, using the unitary gauge the dynamics is totally
encoded in the degrees of freedom of the metric and the
total action then becomes [41, 42],

S =

∫
d4x
√
|g|M

2(t)

2

[
R− 2λ(t)− 2C(t)g00

+ µ2
2(t)

(
δg00

)2 − µ3(t)δKδg00 + ε4(t)(K.
µ
νK.

ν
µ − δK2

+ (3)Rδg00/2)
]

+ Sm[gµν ;ψ], (3)

where M(t), λ(t), C(t), µ2
2(t), µ3(t) and ε4(t) are the

so-called structural functions [41, 42], δg00 ≡ 1 + g00 is
the lapse component, δKµν is the perturbation of the
extrinsic curvature on hypersurfaces of constant time, its
trace is denoted by δK and (3)R is the 3-dimensional
Ricci scalar on such a hypersurface, whereas Sm[gµν , ψ]
refers to the action for the matter fields, ψ. Table I lists
some DE and modified gravity theories covered by the
above action (3) and it shows how many and which of
the structural functions define each theory.

Another relevant aspect of the theoretical development
of any extended theory of gravity lies in the stability
study. In the EFT of DE, the function µ2

2(t) plays the
main role in the study of stabilities and the speed of
sound of DE. Let us remind that a theory is said to be
sound if the propagating scalar degree of freedom has
neither ghost instabilities nor gradient instabilities. By
forcing the time diffeomorphism t→ t+ π(x), on the ac-
tion, the spacetime dependent parameter π(x) becomes
the scalar field fluctuation. Once the system is diago-
nalized with field redefinitions, the actual propagating
degree of freedom π, decoupled from gravity, reads as

Sπ =

∫
a3M2

[
Aπ̇2 −B (

−→
5π)2

a2

]
+O(π2), (4)
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where

A ≡ (C + 2µ2
2)(1 + ε4) +

3

4
(µ− µ3), (5)

B ≡ (C + µ̃3/2− Ḣε4 +Hε̃4)(1 + ε4)

− (µ− µ3)

[
µ− µ3

4(1 + ε4)
− µ− ε̃4

]
. (6)

The expressions A and B must be separately positive:
A > 0 implies the absence of ghosts and hence that
the soundness of the theory is guaranteed. B > 0
enforces the gradient stability condition. Furthermore,
the speed of sound or the propagation speed of DE
reads as c2s = B/A, which must be a positive number,
although just with these conditions there is no guarantee
for that the speed of sound be less than the speed of
light. However, large values of the structural function
µ2
2 prevents from superluminal propagation.

Relevant sectors

The main advantage of the unitary gauge choice is a
neat separation between terms contributing to the back-
ground evolution and those affecting the perturbations.
The relevant equations for every sector will be introduced
below.

With regard to the background, the structural func-
tions governing this sector turn out to be M2(t), λ(t) and
C(t). Since the matter fields are essentially constituted
by non-relativistic species, a perfect fluid approximation
is adopted and the matter pressure is set to be zero. The
field equations derived from the action for a spatially flat
Universe read as

C =
1

2
(Hµ− µ̇− µ2) +

1

2M2
(ρDE + pDE), (7)

λ =
1

2
(5Hµ+ µ̇+ µ2) +

1

2M2
(ρDE − pDE). (8)

where H(t) is the Hubble parameter, a(t) is the scale
factor, dot holds for derivative with respect to time t,

µ ≡ d(logM2(t))
dt is the non-minimal coupling function,

and ρDE and pDE are the DE density and pressure re-
spectively. The DE equation of state is given by ω(t).
It is worth noting the fact that the background func-
tions completely determine the expansion history H(t),
whereas the converse is not true. In other words, differ-
ent choices of M2(t) and ρDE can lead the same Hubble
rate, although this degeneracy can be eventually removed
[41].

On the other side, the perturbation sector is focused
on the study of the large-scale structures evolution for
inhomogeneous distribution of matter in the universe.

This can be computed by using linear perturbation the-
ory (see for instance [43]) and it is governed by the struc-
tural functions M2(t), C(t), µ3(t) and ε4(t). Assuming
the quasi-static approximation1, the evolution of density
contrast δ in the quasi-static approximation for the gen-
eral EFT formalism, is given by

δ̈ + 2Hδ̇ − 3

2
GeffΩmδ = 0, (9)

where Ωm = 8πG
3H2

0
ρm(z) and Geff reads as

Geff =
M2
Pl

M2(1 + ε4)
(10)

·
C + µ̃3

2 − Ḣε4 +Hε̃4 + (µ+ ε̃4)2 + YIR

C + µ̃3

2 − Ḣε4 +Hε̃4 + (µ+ε̃4)(µ−µ3)
1+ε4

− (µ−µ3)2

4(1+ε4)2
+ YIR

with G ≡ 1
8πM2

Pl
, µ̃3 ≡ µ̇3 + µµ3 + Hµ3, ε̃4 ≡ ε̇4 +

µε4 + Hε4, and YIR(k, t) accounts for infrared correc-
tions. However, IR corrections become important only
at wavelengths scales as large as Hubble scale, therefore
YIR can be considered negligible [41].

III. BRANS-DICKE AND QUINTESSENCE
THEORIES

Brans-Dicke theories

The action corresponding to JFBD theory without po-
tential in the Jordan frame can be written as

SBD =

∫
d4x

16πG∗

√
−g
[
φR− ω0

φ
∂νφ∂νφ

]
+ Sm[gµν ;ψ],

(11)

where G∗ holds for the bare gravitational coupling con-
stant, R the Ricci scalar associated to the metric gµν ,√
−g the determinant of the metric, Sm the action corre-

sponding to matter fields ψ and the metric, φ the scalar
field and ω0 the constant coupling between the scalar
field and the metric2 .

1 For sub-Hubble scales, time derivatives of involved quantities
are usually neglected with respect to the spatial derivatives. Nu-
merous investigations have addressed the validity of the quasi-
static approximation within the perturbation theory. One must
be aware of the error introduced when this approximation is em-
ployed [44, 45].

2 As mentioned, JFBD theories are included in a more general
set of the so-called scalar-tensor theories. These theories allow
for ω0 depending on the scalar field itself and may also include
a potential to the scalar field Lagrangian density. In fact the
popular f(R) theories of gravity correspond to ω0 = 0 in its
metric version [14].
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Using unitary gauge in the previous action (11)

SBD =

∫
d4x
√
|g|M

2(t)

2

R− ω0g
00

(
φ̇0(t)

φ0(t)

)2

− Ṽ (t)

 ,
(12)

where we have rewritten the scalar field in terms of the
mass factor as M2(t) ≡ φ0(t)

8πG∗
and the potential as Ṽ (t) ≡

V (t)/φ0(t). Note ω0 can be reparameterized as ω0 =

− 3−1/α2

2 [46] where α < 3.45 × 10−3 according to [47].
Raychaudhuri and evolution equations for JFBD [48, 49]
read as

H2 +H
φ̇

φ
− ω0

6

(
φ̇

φ

)2

− V (φ)

6φ
=
ρm
3φ

(13)

2Ḣ+3H2 +
φ̈

φ
+2H

φ̇

φ
+
ω0

2

(
φ̇

φ

)2

− V (φ)

φ
= −pm

φ
(14)

and the equation of motion for the scalar field yields

φ̈+ 3Hφ̇− 8πGρm,0α
2a−3 = 0, (15)

By identifying terms between (3) and (12) one can rewrite
BD theories into the EFT formalism, finding that the
three non-zero structural functions are (

µ(t) =
φ̇0(t)

φ0(t)
; λ(t) =

Ṽ (t)

2
; C(t) =

ω0

2

(
φ̇0(t)

φ0(t)

)2

.

(16)

Nevertheless, in our analysis only those JFBD model
with null potential are considered for the sake of simplic-
ity. Therefore, the structural function λ(t) also vanishes.

The considered initial conditions: φ(z = 1100) = 0
and φ̇(z = 1100) = 0 (as it is suggested in reference
[46]). Furthermore, the contribution of the scalar field

to the background quantities is quite negligible, φ′2

H ∼
10−11 − 10−17. Due to this fact, one can take with no
loss of accuracy the expansion history as given by ΛCDM,
for the JFBD models under study [46].

Concerning the perturbation sector, the expression for
the effective gravitational function (10) yields

Geff =
2C + 2µ2 + YIR

2C + 3
2µ

2 + YIR
, (17)

where it is easy to notice that, for subHubble modes one
can assume YIR ' 0. Thus one can solve the equation
(9) with the same initial conditions as for ΛCDM.

Furthermore, it is worth noting that JFBD models ful-
fill the stability conditions, in other words, equations (5)
and (6) are simultaneously positive. Besides, the square
of speed of sound (ratio between (6) and (5)) is equal to
one, avoiding superluminal fields.

Quintessence models

The general action of a Quintessence single field mini-
mally coupled to gravity [6] reads as

Sφ =

∫
d4x
√
|g|
[
M2

2
R− 1

2
(∂µφ)(∂µφ)− V (φ)

]
.

(18)
After applying therein the unitary gauge, i.e., fixing the
time coordinate as a function of the scalar field, the
quintessence action (which only displays metric degrees
of freedom) takes the following form:

Sφ =

∫
d4x
√
|g|M

2(t)

2

[
R− 2

M2(t)

(
φ̇20(t)

2
g00 − V (t)

)]
(19)

In the case of Quintessence, the only structural functions
which are not null are C(t), λ(t) andM(t) ≡ const. which
can be identified with the terms on the general EFT of
DE action (3). This leads to

C(t) =
φ̇20

2M2(t)
; λ(t) =

V (t)

M2(t)
. (20)

Besides, one can write the action in terms of the back-
ground quantities by computing the stress-energy tensor.
Thus, the density energy and the pressure of the scalar
fields read respectively as

ρφ =
φ̇0

2

2M2(t)
+ V (φ) ; pφ =

φ̇0
2

2M2(t)
− V (φ). (21)

Then, the Friedmann equation and the equation of mo-
tion for the field take the form(

a′(τ)

a(τ)

)2

=
φ̃′2

6
+ Ṽ (φ̃) + Ωm,0a

−3(τ), (22)

φ̃′′ + 3
a′

a
φ̃′ + 3

∂Ṽ (φ̃)

∂φ̃
= 0, (23)

being prime the derivative with respect to the dimension-
less time τ = H0t (where t is the cosmological time and
H0 is the Hubble parameter at the present), φ̃ = φ

√
8πG,

Ωm,0 = 8πG
3H2

0
ρm,0 and Ṽ (φ̃) is the dimensionless poten-

tial. Finally for Quintessence, the density contrast equa-
tion takes the form (9), where Geff = 1 according to
(10).Moreover, Quintessence theories satisfy the ghost
and gradient stability conditions and the square of the
speed of sound is exactly one. From now on, we particu-
larize our study to IPL and 2EP models of Quintessence.

Inverse Power-Law model

For Quintessence IPL models the potential reads as

V (φ) =
M4+α

φα
. (24)
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One of the main features of this kind of models is the
appearance of a tracker attractor. The tracker field is
characterized by the fact that it remains subdominant
for the most of the history of the Universe and it begins
to be relevant at late epoch when it drives the cosmic
acceleration. Tracker fields have attractor-like solutions
which means nothing but that they rapidly converge to
a common cosmic evolutionary track of ρφ(t) and ωφ(t)
for a wide range of initial conditions. The equation of
state is determined by the dominant component, e.g., in
the matter-dominated epoch the equation of state of the
tracker field reads as ωφ = αωm−2

α+2 = −2
α+2 [50]. Let us re-

mind this is valid only when the Quintessence component
is not dominant and its equation of state is a constant so
that the model could be thought to behave as a ωCDM
model.

We solve the Friedmann equation (22) and the equa-
tion of motion for the scalar field (23) where the di-
mensionless potential is Ṽ (φ̃) = A/φ̃α, being A =
M4+α(8πG)1+α/2

3H2
0

. Initial conditions for the background

quantities are a(0) = 1/1001, and φ(0) = 0.5, φ′(0) = 0
for the scalar field [50].

The dependency between parameters Ωm,0 and A is
encoded in the equation of motion (23). This means
that one cannot know a priori which value of A corre-
sponds to a given Ωm,0. Due to this fact, we need to per-
form a first integration with arbitrary values {Ωm,0, A},
to implement a time rescaling, since the true values of
the aforementioned parameters must satisfy the equali-
ties H(z = 0) = 1 and a(z = 0) = 1, in order to compute
a second integration which yields the true background
and field evolution. Once this subtlety is considered, we
are ready to integrate the matter density perturbation
equation (9) for α ∈ [0, 10]3 and Ωm,0 ∈ [0, 0.50].

Double Exponential Potential model

The second Quintessence model is the 2EPmodel
whose potential takes the form:

V (φ) = M4(eα
√
8πGφ + eβ

√
8πGφ), (25)

where M , α and β are the parameters of the model. The
corresponding dimensionless quantities would be:

Ṽ (φ̃) = A(eαφ̃ + eβφ̃) (26)

being φ̃ = φ
√

8πG and A = M4(8πG)
3H2

0
. The reason of

considering a double exponential instead of a single one
lies in the fact that for the latter, the yielded equation

3 The parameter α cannot take negative values since the potential
would stop being an inverse power-law

of state is the same as that of the background fluid and
then there is no cosmic acceleration phase. However, the
use of a double exponential potential solves this problem.
Another interesting feature of of the potential (25) above
is its behavior along the cosmological eras: during the
matter-dominated epoch, it follows a scaling behavior,
whereas it becomes dominant at late times inducing an
accelerating phase with an equation of state quite close
to −1. Different values of the parameters imply either
an early or a late transition from the scaling matter era
to the accelerating era. The equations of motion for the
Hubble rate (22) and the scalar field (23) are solved in the
same manner as for the case of IPL with the same initial
conditions and they present the same kind of subtleties,
so that a double integration must also be performed. In
this case, α cannot take either negative values or higher
than 0.8 (since ωφ < −0.8 [9]) and β can be fixed for the
sake of simplicity to β = 20 [50] since β must be higher
than 5.5 due to Nucleosynthesis constraints, see [9].

IV. DATA FIT ANALYSIS

We focus our study in theories which involve a
mechanism responsible of the accelerated expansion at
the present epoch and which must be subdominant in
the past. A χ2 test is implemented in order to constrain
the parameters of the different models.

In the perturbation sector, we use the Wilkinson Mi-
crowave Anisotropy Probe 9 (WMAP9) in combination
with THF, DNM, 2 degree Field Galaxy Red Survey
2dFGRS, 2SLAQ, VIMOS-VLT Deep Survey VVDS,
Sloan Digital Sky Survey Luminous Red Galaxies SDSS
LRG, Wiggle Z, the Baryon Oscillation Spectroscopic
survey BOSS, 6Degree Field Galaxy Survey 6dFGS
and VIPERS datasets, see Table II. In particular, from
the large variety of DE Surveys, we are interested
in the growth structure functions, i.e. f(z)σ8,0δ(z),
where f(z) ≡ dlnδ

dlna is the growth rate as a function of
the redshift, σ8,0 is defined as the amplitude of the
perturbations at the the present time and at the length
scale, r = 8Mpch−1, which splits up the linear from
the non-linear regime. Further σ8,0δ(z) ≡ σ8(z) is
the amplitude of the power spectrum of the density
perturbations.

In the background sector, we study supernovae type
Ia (SNeIa) datasets and Cosmic Microwave Background
(CMB) data. Union2 dataset [29] has been employed
in order to study the luminosity distance to each SNeIa
with a given redshift. The distance modulus, µ̃(z) (do not
confuse with the structural function µ), is the difference
between the apparent magnitude, m, and the absolute
magnitude, M , and can be written in terms of a dimen-
sionless cosmic time, τ = H0t where H0 is the Hubble
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parameter today, as

µ̃(τ) = m−M = 5logdL(τ) + 5log

(
cH−10

Mpc

)
+ 25

= 5logdL(τ) + M̃

(27)

and it is directly related to the luminosity distance,

dL(τ) = a(τ0)
a(τ)

∫ τ0
τ

dτ ′

a(τ ′) . M̃ is considered as a nuissance

parameter and must minimize the theoretical expression
of chi-square.
Concerning the CMB data [30] we use the distance prior
method which uses two distances ratios measured by
means of the CMB temperature power spectrum, namely
the acoustic scale, lA, which is defined as the ratio of
the angular diameter distance, dA(z), and the comoving
sound horizon, rs(z), evaluated at the decoupling epoch,
z∗,

lA ≡
dA(z∗)

rs(z∗)
, (28)

and the shift parameter, R, given by

R =
√

ΩmH0dA(z∗). (29)

The values of the distance priors [30] arelAR
z∗

 =

 302.10± 0.86
1.710± 0.019
1090.04± 0.93


and the inverse covariance matrix

C−1 =

 1.800 27.968 −1.103
27.968 5667.577 −92.263
−1.103 −92.263 2.923


therefore, the chi-square is given by χ2 = χTC−1χ,

where χ is a vector which saves the difference between
the theoretical values and the observed ones of lA, R
and z∗.

Once the χ2 analysis for the growth structure for-
mation and the expansion history are done, one can
superpose both outcomes in order to implement a total
χ2 analysis. This allows us to constrain further the
parameters of the theories under study and to work with
a more accurate analysis.

V. RESULTS AND MODELS COMPARISON

Results Brans-Dicke theories

The χ2 analysis (figure ??) reveals that either the
parameter ω and α are not constrained at all, while
Ωm,0 ∈ [0.28, 0.34] clearly. The best-fitting JFBD model

Survey Redshift, z fσ8(z) Reference

THF 0.02 0.40 ± 0.07 [17]
DNM 0.02 0.31 ± 0.05 [18]
6dFGS 0.07 0.42 ± 0.06 [19]
2dFGRS 0.17 0.42 ± 0.06 [20, 21]
2SLAQ 0.55 0.45 ± 0.05 [22]

SDSS LRG
0.34 0.53 ± 0.07

[23, 24]0.25 0.35 ± 0.06
0.37 0.46 ± 0.04

BOSS 0.57 0.43 ± 0.07 [25]

WiggleZ
0.20 0.40 ± 0.13

[26]0.40 0.39 ± 0.08
0.60 0.40 ± 0.07
0.76 0.48 ± 0.09

VVDS 0.77 0.49 ± 0.18 [21, 27]
VIPERS 0.80 0.47 ± 0.08 [28]

Table II: Observational data gathered from a large variety
of galaxy power spectra from different surveys. Name of the
survey (first column), value of the redshift at the measure-
ment (second column), observed vale of the growth structure
function (third column) and references (fourth column) are
presented.

is represented in Figure ?? for the growth structure func-
tion. Since a graphic representation of the growth struc-
ture function of JFBD versus ΛCDM does not show any
noticeable difference, in this case we consider to plot their
relative difference in Figure ??.

Quintessence

Inverse Power-Law model

One can see in Figure ?? the outcome of the χ2

analysis and conclude that the observational data do not
constrain that much the parameter α whereas the most
likely range of matter content is Ωm,0 ∈ [0.20, 0.34].

The plot for the growth function f(z)σ8,0δ(z) of the
best-fitting IPL model versus the redshift can be seen in
figure ??. Other aspect to study is how much the above
quantity deviates from ΛCDM for the same content of
matter since we impose the model to behave as ΛCDM
at the present time. This can be seen in Figure ?? and
one realizes that the deviation increases for larger values
of redshift, z.

Double Exponential Potential model

One can see in Figure ?? the outcome of the χ2 analysis
and conclude that the observational data indicate the
most likely range of matter content which is [0.31, 0.40]
and α practically all the range.
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The plot for the growth function f(z)σ8,0δ(z) of
the best-fitting 2EP model versus the redshift can
be seen in Figure ??. The deviation of 2EP from
ΛCDM can be seen in Figure ?? where they seem to
be parallel but with a greater contribution of 2EP model.

VI. EFT OF DE VERSUS MODEL BY MODEL
ANALYSIS

In this section we will compare the efficiency, advan-
tages and disadvantages of the data analysis performed
by using the EFToDE framework in contrast with a more
traditional model by model analysis.

• EFToDE

– Advantages:

1. Fast.

2. Able to constrain the EFT parameter
space and analyse a bunch of theories
which satisfy the stability conditions.

– Disdvantages:

1. It depends on concrete parametrisation,
which might be arbitrary (examples in lit-
erature).

2. Wrong parametrisation? To compare [16]
with parametrisation showed in literature.

3. Number of parameters is high: cos-
mological parameters {Ωm,Ωr, σ8,MPl}
and EFT parameters {µ, ε4, µ3, ...}. The
higher the number of parameters, the bet-
ter might be the fitting curve but the
higher the value of the minimum χ2. That
would mean the less realistic the model
might be with respect to the observational
dataset.

4. We cannot identify the kind of theory
which the best fit corresponds to (cosmo-
logical constant, quintessence, f(R) etc).
Given a theory, we can identify its EFT
parameters; however, given a set of EFT
parameters, it is not so straightforward to
recognise the theory.

• Model by model analysis

– Advantages:

1. It allows to study and control the sub-
tleties and issues of each theory such as
the need of a double integration for the
Quintessence models.

– Disdvantages:

1. Slow.

2. No broad picture and highly time consum-
ing. The analysis needs to be repeated for
several theories to reach a good conclu-
sion.

In conclusion, EFToDE analysis may be fast and it al-
lows to study a huge number of theories; but it might not
take into account some important subtleties. Conversely,
a model by model analysis complements the EFT study,
such that it is slow but capable of dealing with compu-
tational details of each theory. It depends on what the
scientist’s priorities are to choose the kind of analysis we
want to perform.

VII. CONCLUSIONS

They need the full plots and χ2 values.

We have compared the predictions of competitive ex-
tended theories of gravity, namely two quintessence mod-
els, Inverse Power-Law and Double Exponential Potential
models, and one Brans-Dicke theory without potential
with observational measurements of luminosity distance
vs. redshift from the SNIa catalogue (which one?),
CMB data and large-scale structure growth rate surveys.
We have obtained the corresponding χ2 confidence re-
gions in the planes {α,Ωmh2} - where parameter α takes
different interpretation depending on the model iunder
consideration - and compared their predictions with both
the Concordance ΛCDM and Dark Energy models with
constant equation of state ωCDM. It is worth noting that
all the models provide an expanding accelerated Universe
today (see Table ??). Nevertheless, not all of them cause
the same acceleration being the JFBD model the one pro-
viding the closest value to the observational value q−0.55

With respect to the growth structure functions corre-
sponding to the best fit for every model, one can observe
how all the curves are convex and they all coincide at
redshift z = 0. The one which less deviates from ΛCDM
is Jordan Fierz Brans Dicke model because it has the
same background evolution for the same amount of mat-
ter. In contrast, the Double Exponential Potential model
shows the most distant curve. Moreover, both ωCDM
and Inverse Power-Law show almost parallel curves of
the growth structure function.

To summarize, it seems that the considered large-scale
structure datasets (Table II) are not fully stringent for
the parameters of our models.

Furthermore, we have found that the best-fitting model
for the combined χ2 turns out to be ΛCDM with a matter
content of Ωm,0 = 0.302, closely followed by the Inverse
Power-Law model of Quintessence with Ωm,0 = 0.265.
One could think that the second best model would be
Jordan Fierz Brans Dicke since their curves are closer to
the ΛCDM ones. In fact, it is not because this model has
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more independent parameters to fit and therefore its χ2 is
worse than other models with less number of independent
parameters.
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