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1 Introduction

2 Non-linear equation for the matter density contrast

Say intro stuff here :
- EFToDE : we don’t touch the matter sector
- Thus : standard GR procedure to get continuity and Euler equation
- Introduce counter terms with EFToLSS procedure
- Gravitational sector is changed : EFToDE Poisson equation

2.1 Step 1 : Matter equations of motion (SPT)

→ Pic your favourite metric.

The perturded FLRW line element is

ds2 = −(1 + 2Φ)dt2 + a2(1 + 2Ψ)δijdx
idxj , (1)

Where Φ and Ψ are resp. the perturbation of the Newtonian potential resp. curvature potential,
both depend on cosmic time and space and a is the scaler factor of the universe.

The corresponding Christoffel symbols Γσµν are

Γ0
00 = Φ̇

Γ0
0i = ∂iΦ

Γ0
ij = a2δij(1 + 2Ψ− 2Φ)(H + Ψ̇)

Γj00 =
1− 2Ψ + 2Φ

a2
∂jΦ

Γj0i = δji (H + Ψ̇)

Γjki = δjk∂iΨ + δji ∂kΨ− δ
jm∂mΨδki,

where H = ȧ/a is the Hubble rate and a dot means a derivatives w.r.t. cosmic time.

→ Pic your favourite EMT.

The stress-energy tensor of perfect fluid reads

Tab = (ρ+ P )uaub + Pgab (2)

and the four-velocity of comoving observers is

ua = ξ(1, vi) (3)

where ξ is the Lorentz factor and vi = dxi

dt the components of the comoving velocity 3-vector. The
four-velocity is timelike, uau

a = −1, thus one can fix the Lorentz factor to ξ = (1 − Φ)γ, being
γ = (1 + v2

phys)
−1/2 the special relativistic Lorentz factor and v2

phys = a2(1 + 2Ψ− 2Φ)v2 the physical
velocity.
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Hence, the stress-energy tensor components read as

T00 = (ρ+ P )(1 + 2Φ)γ2 − P (1 + 2Φ), (4)

T0i = −a2(ρ+ P )(1 + 2Ψ)γ2vi, (5)

Tij = a4(ρ+ P )(1 + 4Ψ− 2Φ)γ2vivj + a2P (1 + 2Ψ)δij . (6)

→ Compute the covariant conservation of EMT to get the continuity and Euler equation.

HYP : dropping relativistic corrections (γ ∼ 1) and considering cold dark matter (P ∼ 0).

The time-like conservation equation (∇aT a0 = 0) leads to

ρ̇+ ∂m(ρvm) + 3ρ(H + Ψ̇) = 0. (7)

The space-like conservation equation (∇aT ai = 0) leads to

v̇i + vm∂mv
i + 2Hvi +

∂iΦ

a2
= 0. (8)

→ Quasi-static approximation and separation of perturbations and background. XXX

One decomposes :
- ρ(t,x)→ ρ̄(t) + δρ(t,x)
- vi(t,x)→ vi(t,x), by definition the background is fixed to have no velocity

and introduces :
- velocity divergence Θ = ∂iv

i = ∆Ψ (since vi = ∂iΨ and therefore, vi = ∂i∆−1Θ, being ∆ the
Laplacian operator)
- density contrast δ = δρ/ρ̄
- the QSA : neglect time derivatives of the gravitational potentials w.r.t spatial ones.

This leads to obtaining:

δ̇ + Θ = −Θδ − (∂m∆−1Θ)∂mδ (9)

Θ̇ + 2HΘ +
∂iΦ

a2
= −∂m∆−1Θ∂mΘ− ∂i∂m∆−1Θ∂m∂i∆

−1Θ. (10)

Note that the lhs of the equations contain O(1) terms whereas the rhs contain O(2).

2.2 Step 2 : Counter Terms (EFToLSS)

Up to this point all we have used is SPT. Nevertheless, it is known that it breaks down at some scale
in the sense that predictions from the theory cannot be trusted any longer due to the uncapability of
encoding short-distance physics effects. The idea is that at sufficient large scales, the components of
the Universe can be considered as perfect fluids that do not interact among each other. However, the
closer we get to non-linear scales, the more relevant the interactions seem to be. That is why devia-
tions from perfect fluid behaviour appear to be crucial in our analysis. The physical understanding
of the counterterms. At small scales we can think of two different effects:
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1. Those kind of interactions which do not correlate with macroscopic properties, and therefore
they look like random variables. We call them stochastic term and it represents diffusion and
dissipation phenomena where exchange of energy is involved. It is possible to see that they are
relevant at higher order, therefore we do not include them in our 1-loop analysis.

2. Those ones which do correlate with macroscopic properties of the fluid and give rise to bulk
and shear viscosities. They look like Zδ∆δ and ZΘ∆Θ, being Zδ and ZΘ constants.

It can be mathematically obtained buy splitting up the long-wavelength and short-wavelength modes
in the stress energy tensor, and integrating out the short modes. That we will yield an effective
energy-momentum tensor [?]. The counterterms are introduced in the equation for velocity (12) and
not in (11) because matter density need to be conserved.

δ̇ + Θ = −Θδ − (∂m∆−1Θ)∂mδ (11)

Θ̇ + 2HΘ +
∂iΦ

a2
= −∂m∆−1Θ∂mΘ− ∂i∂m∆−1Θ∂m∂i∆

−1Θ− Zδ∆δ − ZΘ∆Θ. (12)

2.2.1 Fourier space

The Fourier transform is given by

Õ[k] =

∫
d3x

(2π)3/2
O(x)e−ik·x ⇔ O[x] =

∫
d3k

(2π)3/2
Õ(k)eik·x. (13)

Therefore, equation (11) in Fourier space is written as

δ̇k + Θk = −
∫

d3qd3r

(2π)6
(2π)3δ(k− q− r)α(q, r)Θ(q)δ(r) (14)

where α(q, r) = 1 +
q · r
q2

Thus, equation (12) after symmetrizing the ∂m∂
−2Θ∂mΘ term reads

Θ̇k + 2HΘk −
k2

a2
Φk = +

k2

a2
[Zδδk + ZΘΘk]

−
∫

d3qd3r

(2π)6
(2π)3δ(k− q− r)β(q, r)Θ(q)Θ(r)

(15)

where β(q, r) =
q · r(q + r)2

2q2r2

This can be merged into one equation :

δ̈k + 2Hδ̇k +
k2

a2
Φk =−

∫
d3qd3r

(2π)6
(2π)3δ(k− q− r)α(q, r)

(
Θ̇(q)δ(r) + Θ(q)δ̇(r)

)
− 2H

∫
d3qd3r

(2π)6
(2π)3δ(k− q− r)α(q, r)Θ(q)δ(r)

− k2

a2
[Zδδk + ZΘΘk]

+

∫
d3qd3r

(2π)6
(2π)3δ(k− q− r)β(q, r)Θ(q)Θ(r)

(16)
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and so

δ̈k + 2Hδ̇k +
k2

a2
Φk = −k

2

a2
[Zδδk + ZΘΘk]

−
∫

d3qd3r

(2π)6
(2π)3δ(k− q− r)

{
α(q, r)

(
Θ̇(q)δ(r) + Θ(q)δ̇(r) + 2HΘ(q)δ(r)

)
− β(q, r)Θ(q)Θ(r)

}
(17)

Using (10) and (9) at linear level, the term in {} can be further reduced, dropping dependencies for
clarity :

α
(

Θ̇δ + Θδ̇ + 2HΘδ
)
− βΘΘ = α

(
Θδ̇ + δ(Θ̇ + 2HΘ)

)
− βΘΘ (18)

= α

(
−δ̇δ̇ − k2

a2
Φδ

)
− βδ̇δ̇ (19)

= −αk
2

a2
Φδ − γδ̇δ̇ (20)

(21)

where the kernel γ(q, r) = α(q, r) + β(q, r).

Thus,

δ̈k + 2Hδ̇k +
k2

a2
Φk =− k2

a2
[Zδδk + ZΘΘk]

+

∫
d3qd3r

(2π)6
(2π)3δ(k− q− r)

{
α(q, r)

k2

a2
Φ(q)δ(r) + γ(q, r)δ̇(q)δ̇(r)

} (22)

2.3 Step 3 : Poisson equation (EFToDE)

The MG theories encompassed within the EFToDE formalism are those with an extra propagating
degree of freedom. Therefore, one would expect new interactions due to the new scalar field. In the
Jordan frame the new couplings which may appear are δΦ, πΦ and πΨ according to the EFToDE
action written in Newtonian gauge

S =

∫
aM2

[
(~∇Ψ)2 − 2(1 + ε4)~∇Φ~∇Ψ− 2(µ+ ε̊4)~∇Ψ~∇π + (µ− µ3)~∇Φ~∇π −

(
C +

µ̊3

2
− Ḣε4 +Hε̊4

)
(~∇π)2

]
−a3 Φδρm,

(23)

where δρm is the perturbation of the non-relativistic energy density, a dot means derivative w.r.t.
proper time and π represents the perturbation of the scalar field. Therefore, one could expect terms
of the form

∼
∫

d3~qd3~r

(2π)6
K1(~k, ~q, ~r; z)δΦ, (24)

∼
∫

d3~qd3~r

(2π)6
K2(~k, ~q, ~r; z)πΦ, (25)

∼
∫

d3~qd3~r

(2π)6
K3(~k, ~q, ~r; z)πΨ. (26)

Nevertheless, the spirit of EFToDE and its unitary gauge is to hide the effect of the perturbation of
the new scalar field in perturbations of the metric. We’ll see that we will not obtain new contributions
to the equation above but every effect from the new degree of freedom is eaten and encoded in the
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effective gravitational parameter Geff .

The Einstein’s equations

M2
PGab = Tab (27)

where MP is the Planck mass, the Einstein tensor is defined as Gµν = Rµν − 1
2Rgµν and Tab is the

energy-momentum tensor.

In the context of EFToDE, equations (27) read as

- 00-component

M2

(
k2

a2
((µ− µ3)π − 2Ψ (ε4 + 1)) + Φ

(
2C − 6H2ε4 − 6H2 − 6Hµ+ 6Hµ3 + 4µ2

2

)
+ π̇

(
−2C + 3Hµ− 3Hµ3 − 4µ2

2

)
+3π

(
H
(
2C −Hµ+ µ2 + µ̇

)
+ Ḣ (−2Hε4 − µ+ µ3)

)
− 3Ψ̇ (2Hε4 + 2H + µ− µ3)

)
= δρm

(28)

- 0i-component

M2
(
π
(
−2C +Hµ+ 2Ḣε4 − µ2 − µ̇

)
+ Φ (2Hε4 + 2H + µ− µ3) + (µ3 − µ) π̇ + 2Ψ̇ (ε4 + 1)

)
= −(pm+ρm)v

(29)

where v is the 3-velocity potential.

- ij-trace component

M2

(
k2

a2

(
−2

3
π (ε4(H + µ) + µ+ ε̇4) +

2Ψ

3
− 2

3
Φ (ε4 + 1)

)
+Φ

(
2C + 6H2ε4 + 6H2 + 4Hµ− 3Hµ3 + 2Hµε4 + 2Hε̇4 + 2Ḣ (ε4 + 2) + 2µ2 + 2µ̇+ µ̇3 + µµ3

)
+π
(
−2Cµ− 2Ċ + 3H2µ− 6CH − 2Hµ2 − 2Hµ̇+ Ḣ (2ε4(3H + µ) + µ+ 2ε̇4) + 2ε4Ḧ − µ3 − µ̈− 3µ̇µ

)
+π̇
(
−2C − 2Hµ+ 3Hµ3 + 2Ḣε4 − 2

(
µ2 + µ̇

)
− µ̇3 − µµ3

)
+Φ̇ (2Hε4 + 2H + µ− µ3) + 2Ψ̇ ((ε4 + 1) (3H + µ) + ε̇4) + (µ3 − µ) π̈ + 2 (ε4 + 1) Ψ̈

)
= δpm

(30)

- ij-traceless component

M2 (π (ε4(H + µ) + µ+ ε̇4)−Ψ + Φ (ε4 + 1)) = σ (31)

where σ is the scalar component of the anisotropic stress (it will be assumed to vanish for our
purposes).

By combining eqs. (28) and (29) we obtain the relativistic generalisation of the Poisson equation :

- Generalized Poisson equation

M2

(
k2

a2
((µ− µ3)π − 2Ψ (ε4 + 1))− 2π̇

(
C + 2µ2

2

)
+ Φ

(
2C − 3Hµ+ 3Hµ3 + 4µ2

2

)
+ 3Ḣ (µ3 − µ)π + (3µ3 − 3µ) Ψ̇

)
= δρm − 3H(pm + ρm)v = ρm∆m

(32)
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In the quasi-static regime (time derivatives of the metric and scalar fluctuations can be neglected with
respect to spatial derivatives), it is possible to compute algebraically an effective Newton constant
Geff(t, k) of a given modified gravity theory. The entire set of perturbation equations then reduces
to

∆Φ = 4πGeffρmδ =
3

2

Geff

GN
H2Ωmδ , (33)

where the effective gravitational constant Geff reads

Geff =
1

8πM(t)2(1 + ε4)2

2C + µ̊3 − 2Ḣε4 + 2Hε̊4 + 2(µ+ ε̊4)2

2C + µ̊3 − 2Ḣε4 + 2Hε̊4 + 2
(µ+ ε̊4)(µ− µ3)

1 + ε4
− (µ− µ3)2

2(1 + ε4)2

. (34)

2.4 Step 4 : THE equation

δ̈k + 2Hδ̇k +
3

2

Geff

GN
H2Ωmδk =− k2

a2
[Zδδk + ZΘΘk]

+

∫
d3qd3r

(2π)6
(2π)3δ(k− q− r)

{
3

2

Geff

GN
H2Ωmα(q, r)δ(q)δ(r) + γ(q, r)δ̇(q)δ̇(r)

}
(35)

And equivalently in redshift

δ′′k −
1− ε
1 + z

δ′k − 4πGeff(z)
ρM (z)

(1 + z)2
δk =

k2

H2a2

Zδδk + ZΘH(1 + z)δ′k
(1 + z)2

+

∫
d3~qd3~r

(2π)6
(2π)3δ(~k − ~q − ~r)

{
4πGeff(z)

ρM (z)

(1 + z)2
α(~q, ~r)δ(~q)δ(~r) + γ(~q, ~r)δ′(~q)δ′(~r)

}
(36)

where ε = − Ḣ
H2 . The right hand side corresponds to the linear equation, the first term in the left

hand side is the counterterm contribution and the last term corresponds to higher corrections in
perturbation theory.

3 Computing the 1 loop matter power spectrum

3.1 Step 1 : Perturbative solution of the density contrast equation

The solution of the renormalised matter density contrast up to order 3 in delta (Fig. ??) reads as

δ = δ(1) + δ(2) + δ(3) + δ(CT ) (37)

3.1.1 Order one

At late times, inside the horizon, δk grows according to the linear contribution in δ equation

δ(1)(k, z) = gMG(z)δ∗k. (38)

To get δ∗k from primordial initial condition we need details of both matter and radiation perturbations.
In doing so we capture the evolution of the primordial gravitational potential, Φ, during matter and
radiation domination. Therefore, by isotropy argument, all modes with the same k will evolve in
exactly same way, thus

δ∗k ≡ Tk(z∗)ΦPrimordial
k (39)

where Tk(z) is a transfer function.
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Figure 1: Diagrams of different orders in delta

3.1.2 Order two

Using Green’s function method

δ(2)(k, z)

∫ z

z∗

dz̃G(z̃, z) source(2) (40)

being source(2) the quadratic contribution in the delta equation. That would lead to

δ(2)(k, z) ⊇
∫

d3~qd3~r

(2π)6
(2π)3δ(~k − ~q − ~r)[α(~q, ~r)AMG(z) + γ(~q, ~r)BMG(z)]δ∗~qδ

∗
~r (41)

where

AMG(z) =

∫ z

z∗

dz̃G(z̃, z)
3

2

Geff

GN
(z) H2

0 Ωm,0 (1 + z̃) g2
MG(z̃) (42)

BMG(z) =

∫ z

z∗

dz̃G(z̃, z)g′MG(z̃)2. (43)

3.1.3 Order three

Analogously,

δ(3)(k, z)

∫ z

z∗

dz̃G(z̃, z) source(2) (44)

where we can use the quadratic contribution of the delta equation to obtain

source(3) =

∫
d3~qd3~r

(2π)6
(2π)3δ(~k − ~q − ~r)[α(~q, ~r)4πGeff(z)

ρM (z)

(1 + z)2
(δ(1)(~q)δ(2)(~r) + δ(2)(~q)δ(1)(~r))

+γ(~q, ~r)(δ(1)′(~q)δ(2)′(~r) + δ(2)′(~q)δ(1)′(~r))].

(45)

Plugging in the solutions for first and second order in delta, the solution at cubic order yields

δ(3)(k, z) ⊇2

∫
d3~qd3~r

(2π)6
(2π)3δ(~k − ~q − ~r)

∫
d3 ~p1d3 ~p2

(2π)6
(2π)3δ(~r − ~p1 − ~p2){α(~q, ~r)[α(~p1, ~p2)FMG(z) + γ(~p1, ~p2)GMG(z)]

+ γ(~q, ~r)[α(~p1, ~p2)DMG(z) + γ(~p1, ~p2)EMG(z)]− β(~q, ~r)α(~p1, ~p2)JMG(z)}δ∗~qδ∗~p1δ
∗
~p2

+2

∫
d3~qd3~r

(2π)6
(2π)3δ(~k − ~q − ~r)

∫
d3 ~p1d3 ~p2

(2π)6
(2π)3δ(~q − ~p1 − ~p2)[α(~q, ~r)β(~p1, ~p2)− γ(~q, ~r)α(~p1, ~p2)]JMG(z)δ∗~rδ

∗
~p1
δ∗~p2

(46)

The functions are given by
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DMG(z) =

∫ z

z∗
dz̃G(z̃, z)g′MG(z̃)A′MG(z̃) (47)

EMG(z) =

∫ z

z∗
dz̃G(z̃, z)g′MG(z̃)B′MG(z̃) (48)

FMG(z) =

∫ z

z∗
dz̃G(z̃, z)4πGeff(z)

ρM (z)

(1 + z̃)2
gMG(z̃)AMG(z̃) (49)

GMG(z) =

∫ z

z∗
dz̃G(z̃, z)4πGeff(z)

ρM (z)

(1 + z̃)2
gMG(z̃)BMG(z̃) (50)

JMG(z) =
1

2

∫ z

z∗
dz̃G(z̃, z)g′MG(z̃)2gMG(z̃). (51)

3.1.4 Counterterm

δCT (k, z) =
k2

H2a2
c2
CT (z)δ∗k (52)

where

c2
CT (z) =

∫
dz̃G(z̃, z)

Zδ(z̃)gMG(z̃) + ZΘ(z̃)H(1 + z̃)g′MG(z̃)

(1 + z̃)2
, (53)

being G(z̃, z) the Green’s function.

3.2 Step 2 : Growth and transfer functions

The Green function satisfies the following equation (from the linear equation of δ):

d2G(z, z̃)

dz2
− 1− ε

1 + z

dG(z, z̃)

dz
− 4πGeff(z)

ρM (z)

(1 + z)2
G(z, z̃) = δ(z − z̃) (54)

G(z = z̃, z̃) = 0

G′(z = z̃, z̃) = 1
(55)

where

ε = − Ḣ

H2
≡ 3

2
ΩM (z) (56)

and

ΩM (z) =
Ωm0(1 + z)3

Ωm0(1 + z)3 + 1− Ωm0
(57)

being Ωm0 + ΩDE0 ≡ 1, since H2 = H2
0 (Ωm0(1 + z)3 + ΩDE0).

d2AMG(z)

dz2
− 1− ε

1 + z

dAMG(z)

dz
− 3

2

Geff

GN
(z) H2

0 Ωm,0 (1 + z)AMG(z) =
3

2

Geff

GN
(z) H2

0 Ωm,0 (1 + z) g2
MG(z) (58)

d2BMG(z)

dz2
− 1− ε

1 + z

dBMG(z)

dz
− 3

2

Geff

GN
(z) H2

0 Ωm,0 (1 + z)BMG(z) = g
′ 2
MG(z) (59)

d2DMG(z)

dz2
− 1− ε

1 + z

dDMG(z)

dz
− 3

2

Geff

GN
(z) H2

0 Ωm,0 (1 + z)DMG(z) =
3

2

Geff

GN
(z) H2

0 Ωm,0 (1 + z) g′MG(z)A′MG(z)

(60)
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Figure 2: Transfer function and coefficients for GR.

d2EMG(z)

dz2
− 1− ε

1 + z

dEMG(z)

dz
− 3

2

Geff

GN
(z) H2

0 Ωm,0 (1 + z)EMG(z) = g′MG(z)B′MG(z) (61)

d2FMG(z)

dz2
− 1− ε

1 + z

dFMG(z)

dz
− 3

2

Geff

GN
(z) H2

0 Ωm,0 (1 + z)FMG(z) =
3

2

Geff

GN
(z) H2

0 Ωm,0 (1 + z) gMG(z)AMG(z)

(62)

d2GMG(z)

dz2
− 1− ε

1 + z

dGMG(z)

dz
− 3

2

Geff

GN
(z) H2

0 Ωm,0 (1 + z)GMG(z) =
3

2

Geff

GN
(z) H2

0 Ωm,0 (1 + z) gMG(z)BMG(z)

(63)

d2JMG(z)

dz2
− 1− ε

1 + z

dJMG(z)

dz
− 3

2

Geff

GN
(z) H2

0 Ωm,0 (1 + z)JMG(z) = g′MG(z)2gMG(z) (64)

The initial conditions for all these equations are equal to zero at z = z∗, A = B = D = E = F =
G = J = 0, so are their derivatives with respect to redshift.
The growth function gMG

d2gMG(z)

dz2
− 1− ε

1 + z

dgMG(z)

dz
−−3

2

Geff

GN
(z) H2

0 Ωm,0 (1 + z)gMG(z) = 0 (65)

gMG(z = z∗) = 1

g′MG(z = z∗) = 0
(66)

3.3 Step 3 : Correlation functions and matter power spectrum

The renormalised 1 loop matter power spectrum (Fig. ??) is

P1−loop = P11 + P13 + P22 + PCT (67)

In order to obtain the linear power spectrum, quadratic, cubic and counter-term contributions we
need to compute the following correlation functions

< δ(1)(k, z)δ(1)(k′, z) >= (2π)3δD(~k + ~k′)P11(k, z), (68)

10



Figure 3: Renormalised 1 loop matter power spectrum.

< δ(2)(k, z)δ(2)(k′, z) >= (2π)3δD(~k + ~k′)P22(k, z), (69)

< δ(1)(k, z)δ(3)(k′, z) >= (2π)3δD(~k + ~k′)P13(k, z), (70)

and
< δ(1)(k, z)δCT (k′, z) >= (2π)3δD(~k + ~k′)PCT (k, z). (71)

Computations yield the following expressions:

P11(k, z) = gMG(z)2PR(k) (72)

PCT (k, z) = cCT (z)2 k2

a2H2
gMG(z)PR(k) (73)

P22(k, z) = 2

∫
d3~q

(2π)3
PR(~q)PR(~k − ~q)[α(~q,~k − ~q)AMG(z) + γ(~q,~k − ~q)BMG(z)]

×[α(−~q, ~q − ~k)AMG(z) + γ(−~q, ~q − ~k)BMG(z)]

(74)

P13(k, z) = 8gMG(z)PR(k)

∫
d3~q

(2π)3
PR(~q)[α(~k,−~q)α(~k − ~q, ~q)[FMG(z) + 2JMG(z)]

+γ(~k,−~q)α(~k − ~q, ~q)GMG(z)

+α(~k,−~q)γ(~k − ~q, ~q)[DMG(z)− 2JMG(z)]

+γ(~k,−~q)γ(~k − ~q, ~q)EMG(z)

+α(~k − ~q, ~q)[β(~k,−~q)− α(~k,−~q)]JMG(z)]

(75)

where overline kernels refer to symmetrised versions.

3.4 Step 4 : UV divergences

Loop integrals lead to some divergences in the ultra violet regime. In the case of EFToLSS (both
in real and redshift space), we distinguish between two regimes, namely: linear regime within SPT
yields reliable results and it is associated to the scale k∗, and the mild non-linear regime k∗ < k < Λ
in which SPT cannot be longer trusted. In this latter regime, loop integrals do not blow up but
their computations are no longer accurate if compare to observations. Therefore, CTs play their role
subtracting such a divergence.

• Local effects: they come from high energy portions of loop integrations (mild non-linear regime).
Locality is manifest by analytic terms in momentum space. The UV divergences are not pre-
dictable from the effective theory and they do not imply any physical consequences since they
are absorbed by re-normalisation parameters. Those parameters are not predicted by the the-
ory. Moreover, they encode our ignorance of high energy physics. They should emerge from
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either an ultimate high energy theory, or measured experimentally, or fixed by simulations.

• Non-local effects: they come from low energy portions of loop integrations (linear regime, where
SPT plays a role). Non locality is manifest by non-analytic behaviour in momentum space.
The structure of such terms differs from local ones. Moreover, their parameters are cut-off
independent, therefore they could be predicted by the effective theory.

At 1-loop corrections and dropping (k/kNL)4 terms, only P13 terms are renormalised (recall P22 is
relevant at 2-loop by the stochastic term due to its k dependence). P13 (75) can be rewritten as

P13(k, z) = 8gMG(z)PR(k){Iαα(Λ)[FMG(z) + 2JMG(z)] + Iαγ(Λ)[DMG(z)− 2JMG(z)]

+ Iγα(Λ)GMG(z) + Iγγ(Λ)EMG(z) + [Iαβ(Λ)− Iαα(Λ)]JMG(z)}.
(76)

The idea is to split the integrals up in the linear regime where SPT can be trusted, and the mild
non-linear regime where a Taylor expansion can be performed since k/kNL << 1:

Iαα(Λ) =

∫ Λ d3~q

(2π)3
PR(~q)α(~k,−~q)α(~k − ~q, ~q)

=

∫ k∗

0

d3~q

(2π)3
PR(~q)α(~k,−~q)α(~k − ~q, ~q)︸ ︷︷ ︸

Linear regime, SPT, Λ-independent

+

∫ Λ

k∗

d3~q

(2π)3
PR(~q)α(~k,−~q)α(~k − ~q, ~q)︸ ︷︷ ︸

Mild non-linear regime, UV sensitive

= a1(Λ) · k2︸︷︷︸
Analytic

+b1 · k3︸︷︷︸
Non−analytic

+O(k4).

(77)

Analytic k-dependence is linked to terms polynomial in k2. Non-analytic terms are manifest by
logarithms or fractional powers of k2 and it is straightforward to see that they decouple from the
cut-off. Therefore, by inspection of the integrals:

P13(k, z) = 8gMG(z)PR(k){(a(Λ)h1(z) · k2 + h2(z) · k3 +O(k4)} (78)

where

h1(z) =
4π

15
{−18DMG(z)− 28EMG(z) + 7FMG(z) + 2GMG(z) + 38JMG(z)}, (79)

h2(z) = b1[FMG(z) + 2JMG(z)] + b2[DMG(z)− 2JMG(z)] + b3GMG(z) + b4EMG(z) + b5JMG(z) (80)

bi coefficients can be obtained by fitting (78) to a cubic polynomial, and

a(Λ) =

∫ Λ d3~q

(2π)3

PR(~q)

q2
(81)

which presents ultra-violet sensitivity and needs to be renormalised.

3.5 Step 5 : IR divergences

In addition, P13 and P22 are separately IR divergent. Fortunately, the sum of them is free of such
divergences [?] in real space.
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3.6 Step 6 : Renormalisation

The re-normalisation process is similar to that of the typical scattering process at 1-loop in Field
Theory [?].The renormalised 1 loop matter power spectrum (Fig. ??) is

P1−loop = P11 + P13 + P22 + PCT (82)

In fact, PCT (k, z) and P13 share the same operator structure, such that all the UV divergences can
be renormalised. Recall P22 renormalisation will be relevant at 2-loop by the stochastic term since
we have decided to truncate our expansion up to order four in k/kNL. Therefore, using (78)

P1−loop(k, z) = gMG(z)2PR(k)

[
1 +

(
8h1(z)

gMG(z)
× a(Λ) +

cMG
CT (z)2

a2H2gMG(z)

)
k2 +

8h2(z)

gMG(z)
k3

]
. (83)

In the UV limit, terms in round brackets have no cut-off dependence since the counter-terms absorb
the divergence. That means, in that limit, the factor coming from the counter-term has the same
z-evolution as fMG

1 (z) ≡ 8h1(z)
gMG(z) up to a constant. Therefore, the previous expression can be rewritten

as
P1−loop(k, z) = g(z)2PR(k)

[
1 + c2

s f
MG
1 (z) k2 + fMG

2 (z) k3 +O(k4)
]

(84)

where f MG
2 (z) ≡ 8h2(z)

gMG(z) and c2
s is the renormalisation factor with o UV sensitivity and which

needs to be fit by observational data or simulations since cannot be predicted by the effective theory.
The renormalisation factor encodes all our ignorance from short distance physics, therefore it can
only be predicted by an ultimate high-energy theory.

4 Comparison to CAMB HALOFit matter power spectrum

4.1 Impact of Geff on Growth functions

Comparison with GR and different cosmologies.
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