

Dr L. Fonseca de la Bella

The motivation of this work ...

NR.

* Large-scale structures * Galaxy surveys

<u>Challenges:</u>

- Description of galaxy distribution
- Small-scale physics
- > Line-of-sight effects
- Large-scale phenomena
- > Others (open discussion)

MENÜ

* Matter power spectrum * Perturbation Theory * Effective Field Theory * Redshift-space mapping * IR-resummation

* Halo power spectrum A tablespoon of bias models

DARK MATTER POWER SPECTRUM IN REDSHIFT SPACE

Standard Perturbation Theory – Dark Matter

Standard Perturbation Theory – Predictions vs data

Effective Field Theory – Small-scale physics

$$\xi(r) \longrightarrow P_{\delta\delta}(k) \supseteq \int_{k_{IR}}^{k*} \mathrm{d}^{3}\mathbf{q}f(\mathbf{q})g(\mathbf{q},\mathbf{k}-\mathbf{q}) + \int_{k*}^{k_{NL}} \mathrm{d}^{3}\mathbf{q}f(\mathbf{q})g(\mathbf{q},\mathbf{k}-\mathbf{q}) = P_{1\ \mathrm{loop}}^{\mathrm{SPT}}(k) + \underbrace{\frac{c_{\delta}^{2}}{k_{NL}^{2}}}_{\mathsf{V}}k^{2}P_{\mathrm{lin}}(k)$$

$$\underbrace{\mathsf{COUNTER-TERM}}_{\mathsf{Nbody\ simulations}}$$

Effective Field Theory – Predictions vs data

... but this is not the whole story

Redshift-space mapping – Line-of-sight effects

Galaxy surveys:

- **★** Infer distances by measuring redshift → **redshift-space distortions**
- ***** The measured power spectra depend on the angle of the line of sight, $\mu = \hat{k} \cdot \hat{r}$.

Redshift-space mapping – Power spectrum

- **1.** Compute the 2-point correlation function
- **2.** Get all contributions to the power spectrum $P_{s,11}(k,\mu,z)$, $P_{s,22}(k,\mu,z)$, $P_{s,13}(k,\mu,z)$...
- **3.** Perform the Legendre decomposition

$$P_{s,l}(k,z) = \frac{2l+1}{2} \sum_{n=0}^{3} \int_{-1}^{1} \mu^{2n} \mathscr{L}_{l}(\mu) P_{2n,s}(k,z) \qquad \qquad \mathcal{L}_{l}(\mu) \text{ Legendre polynomials}$$
$$I=0, 2 \text{ and } 4 \text{ modes}$$

4. Apply the effective field theory method

$$P_{s,l}(k,z) = P_{s,l}^{SPT} - 2D(z)^2 \frac{d_{\delta_{s,l}}}{k_{NL}^2} k^2 \widetilde{P}_{l}(k)$$

$$\frac{d_{\delta,0}}{k_{NL}^2} = 1.88 \, Mpc^2/h^2$$
$$\frac{d_{\delta,2}}{k_{NL}^2} = 15.8 \, Mpc^2/h^2$$
$$\frac{d_{\delta,4}}{k_{NL}^2} = 6.43 \, Mpc^2/h^2$$

One counter-term per each multipole (N-BODY SIMULATIONS)

Redshift-space mapping – Prediction vs data

... what about the wiggles?

IR resummation – Large-scale phenomena

IR resummation – Lagrangian Perturbation

$$P^{IR}(k) = \int d^3 \underline{x}_q e^{-i\underline{k}\cdot\underline{x}_q} \mathscr{K}(\underline{k},\underline{q},\underline{\Psi}(\underline{q})) \Rightarrow P^{IR}(k) = P_{NW}(k) + \int d^3 \underline{x}_q e^{-i\underline{k}\cdot\underline{x}_q} \mathscr{K}_W(\underline{k},\underline{q},\underline{\Psi}(\underline{q}))$$

$P^{IR}(k,z) = P_{NW}(k,z) + e^{\Sigma^2 k^2} (\Delta P_{1-loop,NW}(k,z) + \Sigma^2 k^2 \Delta P_{11,w}(k,z))$

OSCILLATIONS ARE DAMPED

IR resummation – Prediction vs data

- Effective Field Theory in Real Space to deal with the issues encountered by the Standard Perturbation Theory: predictions are reliable for larger values of *k* since counter-terms parametrise small-scale physics.
- Real surveys provide observational data in redshift space so we need to translate every result into Redshift Space.
- Power Spectra given by surveys appear decomposed in their different Legendre multipoles.
- We decompose the redshift-space one-loop matter power spectrum in its monopole, cuadrupole and hexadecapole components.
- We fit one counter-term for each multipole by using N-body simulations.
- We apply the IR-resummation scheme.
- We compare our results with N-body simulations and see the success of the resummed predictions of EFToLSS in Redshift-Space and validity up to $k \simeq 0.75 h/Mpc$.

HALO POWER SPECTRUM IN REDSHIFT SPACE

Halo power spectrum – bias and redshift models

Understanding the appropriate level of modelling sophistication required to analyse present-day and near-future galaxy surveys.

- Impact of bias & redshift-space models on the halo power spectrum.
- We develop the most general bias model: the advective bias model.
- We use **EFT** to account for non-linear physics and use the **WizCOLA** simulation.
- Risk of over-fitting: Bayesian Information Criterion (BIC), WizCOLA ensemble average.

	BIC	Min χ2/dof	Δχ2(%)
Linear+ KaiserTree	11.1	1.1	1.8
Linear+Kaiser Halo	11.1	1.0	3.1
Coev+Kaiser Halo	16.6	1.0	3.2
Coev+SPT	16.6	1.0	2.3
Coev+EFT	44.2	1.1	6.9
M&Roy+ KaiserTree	27.6	1.0	2.8
Advect+SPT	38.7	1.1	5.1
Advect+EFT	66.4	1.2	6.0

Present

One-loop SPT + Coevolution bias