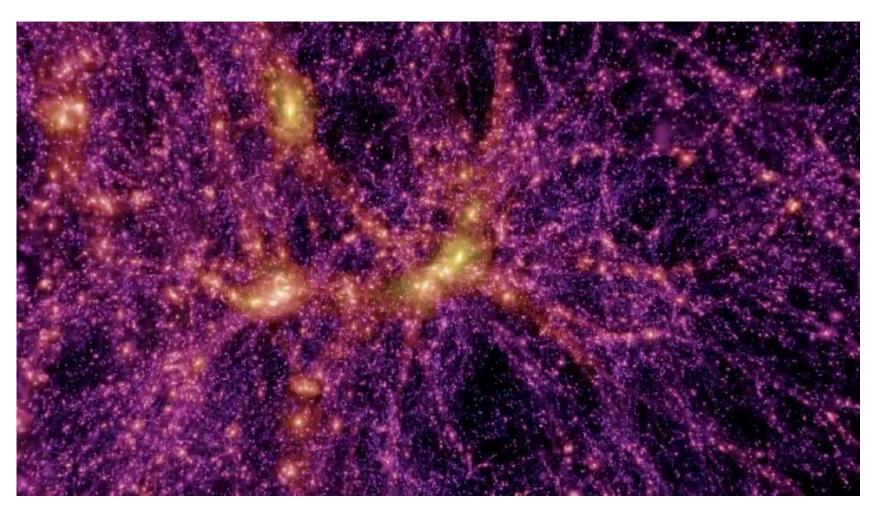
THE AMAZING WORLD OF Effective Field Theory of Large Scale Structures & Redshift Space Distortions

Lucía Fonseca de la Bella

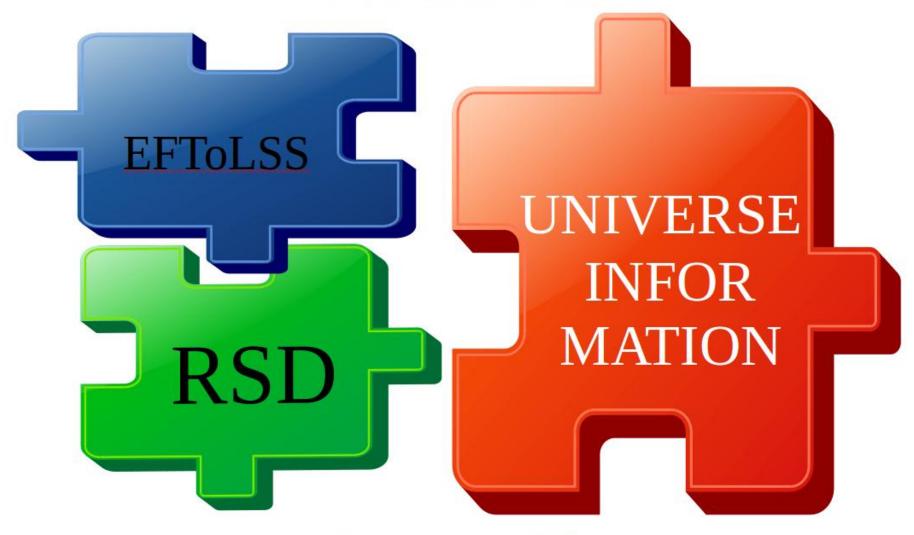
University of Sussex

"...to boldly go where no one has gone before..."

...why is this important? Millenium simulation. Springer et al 2005



...we'll talk about

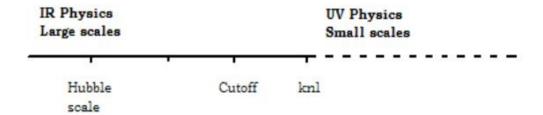


University of Sussex

LFdlB

EFTOLSS- Effective Field Theory of Large Scale Structures

Carrasco, Hertzberg, Senatore 2012



- Large Scale Structures
 - Most relevant information.
 - described by the density contrast of dark matter $\delta = \frac{\Delta \rho}{\rho_0}$ and the matter power spectrum, P.
 - Evolve almost linearly > PERTURBATION THEORY

Standard Perturbation 🔀

EFTOLSS

- No good agreement with new generation of high precision observational data
- Perfect fluid
- UV divergences → <u>Unphysical</u> predictions

- Much better fit with observations.
- Viscosity, dissipation...
- UV divergences absorbed by counterterms!

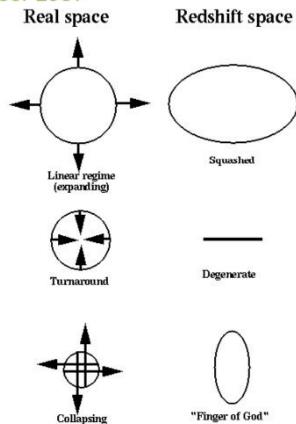
Fluid equations in k space

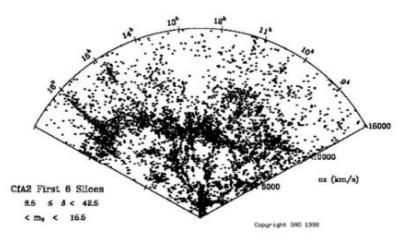
$$\dot{\delta}_k + \Theta_k = -\int \frac{\mathrm{d}^3 \vec{q} \,\mathrm{d}^3 \vec{r}}{(2\pi)^6} (2\pi)^3 \delta(\vec{k} - \vec{q} - \vec{r}) \alpha(\vec{q}, \vec{r}) \Theta(\vec{q}) \delta(\vec{r})$$

$$\dot{\Theta}_k + 2H\Theta_k + \frac{3}{2}H^2\Omega_M(z)\delta_k = \boxed{-\frac{k^2}{a^2}[Z_\delta\delta_k + Z_\Theta\Theta_k]} - \int \frac{\mathrm{d}^3\vec{q}\mathrm{d}^3\vec{r}}{(2\pi)^6}(2\pi)^3\delta(\vec{k} - \vec{q} - \vec{r})\beta(\vec{q}, \vec{r})\Theta(\vec{q})\Theta(\vec{r})$$

Theta is the divergence of the velocity field, alpha and beta are kernels.

Kaiser 1987



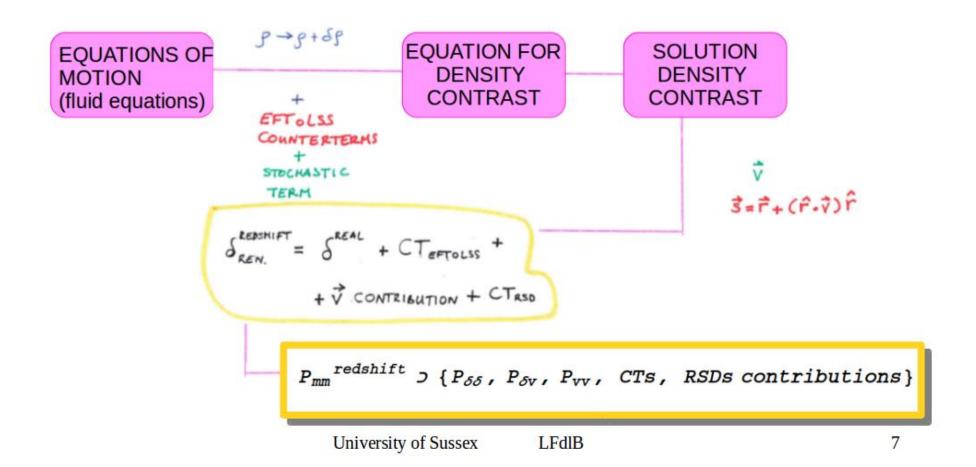


- · Learn about velocities.
- Additional countertem (CT)
 contributions to the matter power
 spectrum involving velocity fields.

EFToLSS & RSD

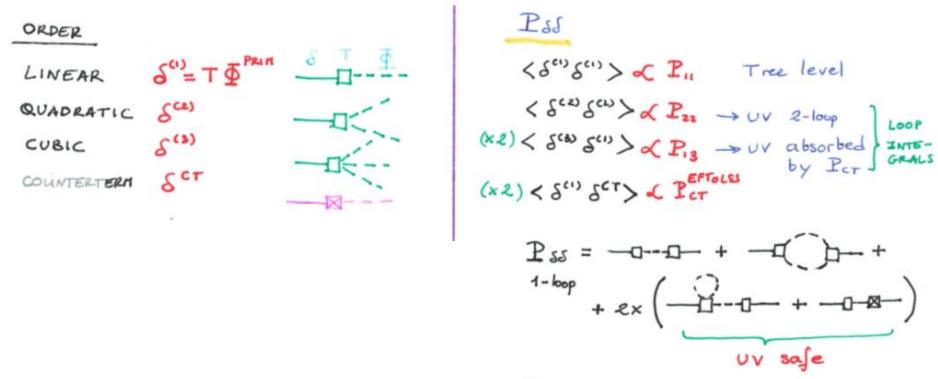
Senatore, Zaldarriaga 2014

• Power spectrum $<\delta^*(k,z)\delta(k',z)>=(2\pi)^3\delta_D(\vec{k}+\vec{k}')P(k,z)$



...1-loop corrections

Solving equation for density contrast



• Analogously, for $P_{\delta v}$ and P_{vv}

...1-loop matter power spectrum in Redshift Space

$$\begin{split} P_{r,\delta,\delta,\,||_{1\text{-loop}}}(k,\mu,t) &= \boxed{P_{\delta,\delta,||_{1\text{-loop}}}(k,t)} + 2\mu^2 \boxed{P_{\delta,\frac{\dot{\delta}}{H},||_{1\text{-loop}}}(k,t)} \\ &+ \mu^4 \boxed{P_{\frac{\dot{\delta}}{H},\frac{\dot{\delta}}{H},||_{1\text{-loop}}}(k,t)} - \left(\frac{k\,\mu}{aH}\right)^2 P_{\delta,[v_z^2],\text{tree}}(k,t) \\ &- \mu^2 \left(\frac{k\,\mu}{aH}\right)^2 P_{\frac{\dot{\delta}}{H},[v_z^2],\text{tree}}(k,t) + \frac{1}{4} \left(\frac{k\,\mu}{aH}\right)^4 P_{[v_z^2],[v_z^2],\text{tree}}(k,t) \\ &+ \left(1 + f\mu^2\right) \left(\frac{k\,\mu}{aH}\right)^2 P_{\delta,[\delta\,v_z^2],\text{tree}}(k,t) + \frac{i}{3} \left(1 + f\mu^2\right) \left(\frac{k\,\mu}{aH}\right)^2 P_{\delta,[v_z^3],\text{tree}}(k,t) \\ &- \left(1 + f\mu^2\right) \left[\left(c_1 + c_2\right)\mu^2 + \left(c_1 + c_3\right)\mu^4\right] \left(\frac{k}{k_{\rm NL}}\right)^2 P_{\delta,\delta,11}(k,t) \;, \end{split}$$

UV DIVERGENCES AND RENORMALISATION

	LOCAL	NON-LOCAL	EFFECTS
MANIFEST BY	ANALYTIC	NON-ANALYTIC	TERMS
STRUCTURE	=	<i>≠</i>	COUNTERTERMS
CUTOFF	DEPENDENT	INDEPENDENT	
PHYSICAL	X	V	
PREDICTED BY EFFECTIVE THEORY	X	V	

- Local in wave number, k.
- Analytic means polynomial in k².
- Non-analytic, log or fractional powers of k².

• Example of loop integrals in momentum space found in P_{13}

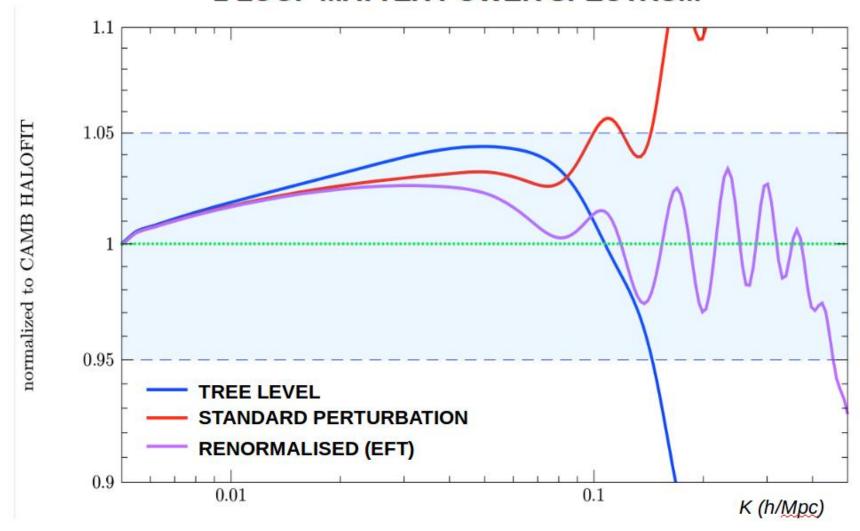
$$I_{\alpha\alpha}(\Lambda) = \int^{\Lambda} \frac{\mathrm{d}^3\vec{q}}{(2\pi)^3} \mathcal{P}_R(\vec{q}) \alpha(\vec{k}, -\vec{q}) \alpha(\vec{k} - \vec{q}, \vec{q})$$

$$= \underbrace{\int^{k_*}_0 \frac{\mathrm{d}^3\vec{q}}{(2\pi)^3} \mathcal{P}_R(\vec{q}) \alpha(\vec{k}, -\vec{q}) \alpha(\vec{k} - \vec{q}, \vec{q})}_{k_* << k \text{ regime, Λ-independent}} + \underbrace{\int^{\Lambda}_{k_*} \frac{\mathrm{d}^3\vec{q}}{(2\pi)^3} \mathcal{P}_R(\vec{q}) \alpha(\vec{k}, -\vec{q}) \alpha(\vec{k} - \vec{q}, \vec{q})}_{k_* << k \text{ regime, Λ-independent}}$$

$$= \underbrace{a_1(\Lambda) \cdot k^2 + b_1 \cdot k^3 + O(k^4)}_{\text{fixed by renormalisation}} \underbrace{bow\text{-energy}}_{\text{Non-analytic}}$$
analytic behaviour, UV sensitive $\underbrace{Non-analytic}_{\text{Non-analytic}}$

COUNTERTERMS

1 LOOP MATTER POWER SPECTRUM



Repeat analysis for $P_{\delta,\frac{\dot{\delta}}{H},\parallel_{1\text{-loop}}}(k,t)$, $P_{\frac{\dot{\delta}}{H},\frac{\dot{\delta}}{H},\parallel_{1\text{-loop}}}(k,t)$ and rest of counterterms

CONCLUSIONS

- The Universe is treated as a fluid. Most of the relevant information in Cosmology is found at large scales.
- At large scales, galaxies are point-like objects. There exist voids, filaments, clusters of galaxies...
- We want to study the <u>backreaction</u> from small scales and the so-called <u>Redshift Space Distortion</u> effect on large scale structures.
- Simulations are very expensive. We would need to run several simulations with different initial conditions.
- Effective Field Theory of Large Scale Structures is a powerful tool
 - This framework solves those theoretical issues present in Standard perturbation theory.
 - Some parameters need to be included in the analytical prediction and need to be measured by matching to numerical data → Renormalisation.
 - It agrees much better with new high precision observational datasets.

& PROSPECTS

- To obtain the renormalisation for the 1 loop matter power spectrum in Redshift Space.
- Compare with observations and N-body simulations.
- To apply this tool to the analysis of the screening mechanism in theories of Modified Gravity.

...1-loop $P_{\delta\delta}$ renormalisation

- $P_{\delta\delta \mid 1-\text{loop}} = P_{11} + P_{13} + P_{CT}$ Tree level UV-div
- Low-k behaviour (analytic terms) → Taylor expansion loop integrals

$$P_{13}(k, z) \approx P_{11}(k, z) k^2 h(z) \int_0^{\Lambda} \frac{dq}{2\pi^2} \mathcal{P}_{\mathcal{R}}(q)$$

Therefore,

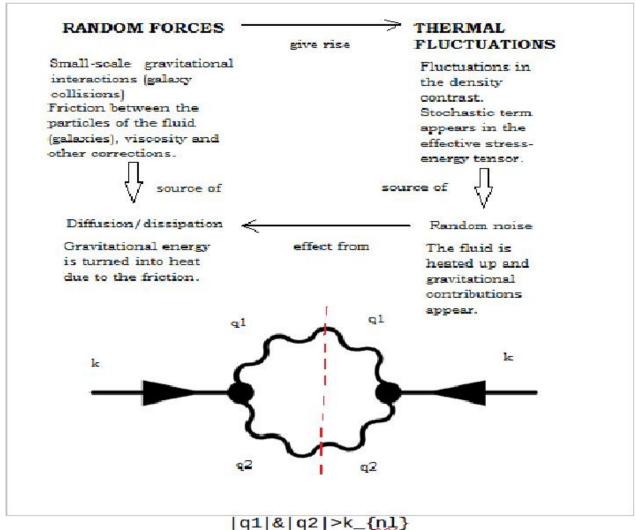
$$P_{\delta\delta \mid 1-\text{loop}} = P_{11} (1 + c_s^2 h(z) k^2)$$
 (same k & z dependence up to a constant)

A(A) Cutoff dependence
eliminated by CT in
the UV limit
(same k & z dependence
up to a constant)

Renormalisation parameter

Fixed observationally or by simulations

Stochastic term



University of Sussex

LFdlB