STRUCTURE FORMATION CONSTRAINTS IN DARK ENERGY AND MODIFIED GRAVITY THEORIES WITHIN THE EFFECTIVE FIELD THEORY FORMALISM

Master II Thesis

Lucía Fonseca de la Bella

supervised by Dr. A. de la Cruz Dombriz 1

¹Theoretical Physics I Department, Complutense University of Madrid, Spain.

Outline

- Cosmological perturbations in General Relativity
- 3 Effective Field Theory formalism

Strategy

- Theories under analysis 5
 - ACDM
 - ω CDM
 - Quintessence
 - Inverse Power-Law
 - Double Exponential Potential
 - Jordan Fierz Brans Dicke

Results and Conclusions

B ▶ < B ▶

To find the model which best explains the current accelerating phase of the Universe by using growth rate data.

- We study the growth structure in Dark Energy (DE) and Modified Gravity (MG) theories : Quintessence, ωCDM and Jordan Fierz Brans Dicke (JFBD).
- We use galaxy power spectra observational data Table 2 to constrain the free parameters of our theories.

2SLAQ		

 χ^2 analysis to evaluate the best-fitting model and compare the results with the Cosmological Concordance Model, Λ CDM.

To find the model which best explains the current accelerating phase of the Universe by using growth rate data.

- We study the growth structure in Dark Energy (DE) and Modified Gravity (MG) theories : Quintessence, ωCDM and Jordan Fierz Brans Dicke (JFBD).
- We use galaxy power spectra observational data Table 2 to constrain the free parameters of our theories.

2SLAQ		

 χ^2 analysis to evaluate the best-fitting model and compare the results with the Cosmological Concordance Model, Λ CDM.

To find the model which best explains the current accelerating phase of the Universe by using growth rate data.

- We study the growth structure in Dark Energy (DE) and Modified Gravity (MG) theories : Quintessence, ωCDM and Jordan Fierz Brans Dicke (JFBD).
- We use galaxy power spectra observational data Table 2 to constrain the free parameters of our theories.

Survey	Redshift, z	$f\sigma_8(z)$	Reference
THF	0.02	0.40 ± 0.07	[1]
DNM	0.02	0.31 ± 0.05	[2]
6dFGS	0.07	0.42 ± 0.06	[3]
2dFGRS	0.17	0.42 ± 0.06	[4, 5]
2SLAQ	0.55	0.45 ± 0.05	[6]
	0.34	0.53 ± 0.07	
SDSS LRG	0.25	0.35 ± 0.06	[7, 8]
	0.37	0.46 ± 0.04	
BOSS	0.57	0.43 ± 0.07	[9]
	0.20	0.40 ± 0.13	
WiggleZ	0.40	0.39 ± 0.08	[10]
	0.60	0.40 ± 0.07	
	0.76	0.48 ± 0.09	
VVDŠ	0.77	0.49 ± 0.18	[5, 11]
VIPERS	0.80	0.47 ± 0.08	[12]

 χ^2 analysis to evaluate the best-fitting model and compare the results with the Cosmological Concordance Model, Λ CDM.

To find the model which best explains the current accelerating phase of the Universe by using growth rate data.

- We study the growth structure in Dark Energy (DE) and Modified Gravity (MG) theories : Quintessence, ωCDM and Jordan Fierz Brans Dicke (JFBD).
- We use galaxy power spectra observational data Table 2 to constrain the free parameters of our theories.

Survey	Redshift, z	$f\sigma_8(z)$	Reference
THF	0.02	0.40 ± 0.07	[1]
DNM	0.02	0.31 ± 0.05	[2]
6dFGS	0.07	0.42 ± 0.06	[3]
2dFGRS	0.17	0.42 ± 0.06	[4, 5]
2SLAQ	0.55	0.45 ± 0.05	[6]
	0.34	0.53 ± 0.07	
SDSS LRG	0.25	0.35 ± 0.06	[7, 8]
	0.37	0.46 ± 0.04	
BOSS	0.57	0.43 ± 0.07	[9]
	0.20	0.40 ± 0.13	
WiggleZ	0.40	0.39 ± 0.08	[10]
	0.60	0.40 ± 0.07	
	0.76	0.48 ± 0.09	
VVDS	0.77	0.49 ± 0.18	[5, 11]
VIPERS	0.80	0.47 ± 0.08	[12]

3 χ² analysis to evaluate the best-fitting model and compare the results with the Cosmological Concordance Model, ΛCDM.

Motivation

DE and MG theories appear as an alternative solution to some theoretical and phenomenological issues in General Relativity (GR).

These theories must

- preserve success of ACDM in previous Cosmological epochs,
- allow the formation of structures of the Universe nowadays,
- drive accelerating expansion of the Universe today.

How to distinguish among DE and MG theories?

- Growth structure observations are sensitive to both background evolution and cosmological linear matter density perturbations.
- Several theories can present the same cosmological expansion history while they differ in the evolution of perturbations.

· · · · · · · · ·

Motivation

DE and MG theories appear as an alternative solution to some theoretical and phenomenological issues in General Relativity (GR).

These theories must

- preserve success of ΛCDM in previous Cosmological epochs,
- allow the formation of structures of the Universe nowadays,
- drive accelerating expansion of the Universe today.

How to distinguish among DE and MG theories?

- Growth structure observations are sensitive to both background evolution and cosmological linear matter density perturbations.
- Several theories can present the same cosmological expansion history while they differ in the evolution of perturbations.

- A I I I A I I I I

Motivation

DE and MG theories appear as an alternative solution to some theoretical and phenomenological issues in General Relativity (GR).

These theories must

- preserve success of ΛCDM in previous Cosmological epochs,
- allow the formation of structures of the Universe nowadays,
- drive accelerating expansion of the Universe today.

How to distinguish among DE and MG theories?

- Growth structure observations are sensitive to both background evolution and cosmological linear matter density perturbations.
- Several theories can present the same cosmological expansion history while they differ in the evolution of perturbations.

3

イロト イポト イヨト イヨト

V. Mukhanov, Cambridge University Press.18 (2005).

• The matter density perturbation equation.

Density contrast $\delta = \frac{\rho - \rho_0}{\rho_0}$.

RW metric in *longitudinal gauge*

$$ds^{2} = a^{2}(\eta)\{(1+2\Phi)d\eta^{2} - (1-2\Psi)[dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})]\}, \qquad (1)$$

 Φ and Ψ Bardeen's potentials.

We obtain the perturbed equations of motions up to linear order :

$$\delta G^{\mu}_{\nu} = -8\pi G \delta T^{\mu}_{\nu}. \tag{2}$$

3 We assume

- Perfect fluid behavior.
- Adiabatic perturbations (entropy is constant).
- Quasi-static approximation (QSA). Time derivatives are small with respect to spatial derivatives.

Fourier space :

$$\ddot{\delta} + 2H\dot{\delta} - 4\pi G\rho_m(t)\delta = 0. \tag{3}$$

< 3 > < 3 >

V. Mukhanov, Cambridge University Press.18 (2005).

• The matter density perturbation equation. Density contrast $\delta = \frac{\rho - \rho_0}{\rho_0}$.

RW metric in *longitudinal gauge*

$$ds^{2} = a^{2}(\eta)\{(1+2\Phi)d\eta^{2} - (1-2\Psi)[dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})]\}, \qquad (1)$$

Φ and Ψ Bardeen's potentials.

We obtain the perturbed equations of motions up to linear order :

$$\delta G^{\mu}_{\nu} = -8\pi G \delta T^{\mu}_{\nu}. \tag{2}$$

3 We assume

- Perfect fluid behavior.
- Adiabatic perturbations (entropy is constant).
- Quasi-static approximation (QSA). Time derivatives are small with respect to spatial derivatives.

Fourier space :

$$\ddot{\delta} + 2H\dot{\delta} - 4\pi G\rho_m(t)\delta = 0. \tag{3}$$

V. Mukhanov, Cambridge University Press.18 (2005).

• The matter density perturbation equation. Density contrast $\delta = \frac{\rho - \rho_0}{\rho_0}$. • RW metric in *longitudinal gauge*

$$ds^{2} = a^{2}(\eta)\{(1+2\Phi)d\eta^{2} - (1-2\Psi)[dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})]\}, \qquad (1)$$

 Φ and Ψ Bardeen's potentials.

We obtain the perturbed equations of motions up to linear order :

$$\delta G^{\mu}_{\nu} = -8\pi G \delta T^{\mu}_{\nu}. \tag{2}$$

3 We assume :

- Perfect fluid behavior.
- Adiabatic perturbations (entropy is constant).
- Quasi-static approximation (QSA). Time derivatives are small with respect to spatial derivatives.

Fourier space :

$$\ddot{\delta} + 2H\dot{\delta} - 4\pi G\rho_m(t)\delta = 0. \tag{3}$$

V. Mukhanov, Cambridge University Press.18 (2005).

• The matter density perturbation equation. Density contrast $\delta = \frac{\rho - \rho_0}{\rho_0}$. • RW metric in *longitudinal gauge*

$$ds^{2} = a^{2}(\eta)\{(1+2\Phi)d\eta^{2} - (1-2\Psi)[dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})]\}, \qquad (1)$$

 Φ and Ψ Bardeen's potentials.

We obtain the perturbed equations of motions up to linear order :

$$\delta G^{\mu}_{\nu} = -8\pi G \delta T^{\mu}_{\nu}. \tag{2}$$

We assume :

- Perfect fluid behavior.
- Adiabatic perturbations (entropy is constant).
- Quasi-static approximation (QSA). Time derivatives are small with respect to spatial derivatives.

Fourier space

$$\ddot{\delta} + 2H\dot{\delta} - 4\pi G\rho_m(t)\delta = 0. \tag{3}$$

V. Mukhanov, Cambridge University Press.18 (2005).

The matter density perturbation equation. Density contrast δ = ρ-ρ₀/ρ₀.
 RW metric in *longitudinal gauge*

$$ds^{2} = a^{2}(\eta)\{(1+2\Phi)d\eta^{2} - (1-2\Psi)[dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})]\}, \qquad (1)$$

 Φ and Ψ Bardeen's potentials.

We obtain the perturbed equations of motions up to linear order :

$$\delta G^{\mu}_{\nu} = -8\pi G \delta T^{\mu}_{\nu}. \tag{2}$$

We assume :

- Perfect fluid behavior.
- Adiabatic perturbations (entropy is constant).
- Quasi-static approximation (QSA). Time derivatives are small with respect to spatial derivatives.

Fourier space :

$$\ddot{\delta} + 2H\dot{\delta} - 4\pi G\rho_m(t)\delta = 0. \tag{3}$$

Valid for sub-Hubble modes, k >> H.

V. Mukhanov, Cambridge University Press.18 (2005).

The matter density perturbation equation. Density contrast δ = ρ-ρ₀/ρ₀.
 RW metric in *longitudinal gauge*

$$ds^{2} = a^{2}(\eta)\{(1+2\Phi)d\eta^{2} - (1-2\Psi)[dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})]\}, \qquad (1)$$

 Φ and Ψ Bardeen's potentials.

We obtain the perturbed equations of motions up to linear order :

$$\delta G^{\mu}_{\nu} = -8\pi G \delta T^{\mu}_{\nu}. \tag{2}$$

We assume :

- Perfect fluid behavior.
- Adiabatic perturbations (entropy is constant).
- Quasi-static approximation (QSA). Time derivatives are small with respect to spatial derivatives.

Fourier space :

$$\ddot{\delta} + 2H\dot{\delta} - 4\pi G\rho_m(t)\delta = 0. \tag{3}$$

Valid for sub-Hubble modes, k >> H.

• The growth structure function is defined as $f(z)\sigma_{0,8}\delta(z)$, being $f(z) = \frac{d\ln\delta}{d\ln a}$ the growth rate and $\sigma_{0,8} \equiv 0.8$.

Effective Field Theory formalism

э

· · · · · · · · ·

EFT FORMALISM

G. Gubitosi, F. Piazza and F. Vernizzi, JCAP 1302 (2013) 032 [arXiv :1210.0201 [hep-th]].

The action of many theories can be written (in *unitary gauge*) in function of the so-called structural functions : M(t), λ(t), C(t), μ₂²(t), μ₃(t) and ε₄(t).

Theory	$\mu = \frac{d\log(M^2(t))}{dt}$	$\lambda(t)$	C(t)	$\mu_{2}^{2}(t)$	$\mu_3(t)$	$\epsilon_4(t)$
ACDM	0	const.	0	0	0	0
ω CDM	0	\checkmark	0	0	0	0
Quintessence	0	\checkmark	\checkmark	0	0	0
JFBD	\checkmark	\checkmark	\checkmark	0	0	0

• Density perturbation equation can be derived (analogously to GR) :

$$\ddot{\delta} + 2H\dot{\delta} - \frac{3}{2}G_{eff}\Omega_m(t)\delta = 0, \qquad (4)$$

being $\Omega_m(t)$ the matter content and

$$G_{\text{eff}} = \frac{1}{G} \frac{1}{8\pi M^2 (1+\epsilon_4)} \frac{2C + \tilde{\mu}_3 - 2\dot{H}\epsilon_4 + 2H\tilde{\epsilon}_4 + 2(\mu + \tilde{\epsilon}_4)^2 + Y_{IR}(t,k)}{2C + \tilde{\mu}_3 - 2\dot{H}\epsilon_4 + 2H\tilde{\epsilon}_4 + 2\frac{(\mu + \tilde{\epsilon}_4)(\mu - \mu_3)}{1+\epsilon_4} - \frac{(\mu - \mu_3)^2}{2(1+\epsilon_4)^2} + Y_{IR}(t,k)}$$
(5)

where $\tilde{\mu}_3$, $\tilde{\epsilon}_4$ and $Y_{IR}(t, k)$ are combinations of the structural functions Stability conditions :

$$A = (C + 2\mu_2^2)(1 + \epsilon_4) + \frac{3}{4}(\mu - \mu_3) \ge 0, \quad \text{Ghost free } \checkmark$$
(6)

$$B = (C + \tilde{\mu}_3/2 - \tilde{H}\epsilon_4 + H\tilde{\epsilon}_4)(1 + \epsilon_4) - (\mu - \mu_3) \begin{pmatrix} \mu - \mu_3 \\ 4(1 + \epsilon_4) & -\mu - \tilde{\epsilon}_4 \end{pmatrix} \ge 0. \quad \text{Gradient stability} \quad (7)$$

EFT FORMALISM

G. Gubitosi, F. Piazza and F. Vernizzi, JCAP 1302 (2013) 032 [arXiv :1210.0201 [hep-th]].

The action of many theories can be written (in *unitary gauge*) in function of the so-called structural functions : M(t), λ(t), C(t), μ₂²(t), μ₃(t) and ε₄(t).

Theory	$\mu = \frac{d\log(M^2(t))}{dt}$	$\lambda(t)$	C(t)	$\mu_{2}^{2}(t)$	$\mu_3(t)$	$\epsilon_4(t)$
ACDM	0	const.	0	0	0	0
ω CDM	0	\checkmark	0	0	0	0
Quintessence	0	\checkmark	\checkmark	0	0	0
JFBD	\checkmark	\checkmark	\checkmark	0	0	0

• Density perturbation equation can be derived (analogously to GR) :

$$\ddot{\delta} + 2H\dot{\delta} - \frac{3}{2}G_{eff}\Omega_m(t)\delta = 0, \qquad (4)$$

being $\Omega_m(t)$ the matter content and

$$G_{eff} = \frac{1}{G} \frac{1}{8\pi M^2 (1+\epsilon_4)} \frac{2C + \tilde{\mu}_3 - 2\dot{H}\epsilon_4 + 2H\tilde{\epsilon}_4 + 2(\mu + \tilde{\epsilon}_4)^2 + Y_{IR}(t,k)}{2C + \tilde{\mu}_3 - 2\dot{H}\epsilon_4 + 2H\tilde{\epsilon}_4 + 2\frac{(\mu + \tilde{\epsilon}_4)(\mu - \mu_3)}{1+\epsilon_4} - \frac{(\mu - \mu_3)^2}{2(1+\epsilon_4)^2} + Y_{IR}(t,k)}$$
(5)

where $\tilde{\mu}_3$, $\tilde{\epsilon}_4$ and $Y_{IR}(t, k)$ are combinations of the structural functions. Stability conditions :

$$A = (C + 2\mu_2^2)(1 + \epsilon_4) + \frac{3}{4}(\mu - \mu_3) \ge 0, \quad \text{Ghost free \checkmark}$$

$$C + \tilde{\mu}_3/2 - \dot{H}\epsilon_4 + H\tilde{\epsilon}_4)(1 + \epsilon_4) - (\mu - \mu_3) \left(\frac{\mu - \mu_3}{4(1 + \epsilon_4)} - \mu - \tilde{\epsilon}_4\right) \ge 0. \quad \text{Gradient stability} \checkmark$$

$$(7)$$

Master II

EFT FORMALISM

G. Gubitosi, F. Piazza and F. Vernizzi, JCAP 1302 (2013) 032 [arXiv :1210.0201 [hep-th]].

The action of many theories can be written (in *unitary gauge*) in function of the so-called structural functions : M(t), λ(t), C(t), μ₂²(t), μ₃(t) and ε₄(t).

Theory	$\mu = \frac{d\log(M^2(t))}{dt}$	$\lambda(t)$	C(t)	$\mu_{2}^{2}(t)$	$\mu_3(t)$	$\epsilon_4(t)$
ACDM	0	const.	0	0	0	0
ω CDM	0	\checkmark	0	0	0	0
Quintessence	0	\checkmark	\checkmark	0	0	0
JFBD	\checkmark	\checkmark	\checkmark	0	0	0

• Density perturbation equation can be derived (analogously to GR) :

$$\ddot{\delta} + 2H\dot{\delta} - \frac{3}{2}G_{eff}\Omega_m(t)\delta = 0, \qquad (4)$$

being $\Omega_m(t)$ the matter content and

$$G_{eff} = \frac{1}{G} \frac{1}{8\pi M^2 (1+\epsilon_4)} \frac{2C + \tilde{\mu}_3 - 2\dot{H}\epsilon_4 + 2H\tilde{\epsilon}_4 + 2(\mu + \tilde{\epsilon}_4)^2 + Y_{IR}(t,k)}{2C + \tilde{\mu}_3 - 2\dot{H}\epsilon_4 + 2H\tilde{\epsilon}_4 + 2\frac{(\mu + \tilde{\epsilon}_4)(\mu - \mu_3)}{1+\epsilon_4} - \frac{(\mu - \mu_3)^2}{2(1+\epsilon_4)^2} + Y_{IR}(t,k)}$$
(5)

where $\tilde{\mu}_3$, $\tilde{\epsilon}_4$ and $Y_{lR}(t,k)$ are combinations of the structural functions. • Stability conditions :

$$A = (C + 2\mu_2^2)(1 + \epsilon_4) + \frac{3}{4}(\mu - \mu_3) \ge 0, \quad \text{Ghost free } \checkmark$$
(6)

$$B = (C + \tilde{\mu}_3/2 - \dot{H}\epsilon_4 + H\tilde{\epsilon}_4)(1 + \epsilon_4) - (\mu - \mu_3) \left(\frac{\mu - \mu_3}{4(1 + \epsilon_4)} - \mu - \tilde{\epsilon}_4\right) \ge 0. \quad \text{Gradient stability} \quad (7)$$

æ

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

4D spatially flat, homogeneous and isotropic Universe in expansion described by the Robertson Walker (RW) metric in comoving coordinates

$$ds^{2} = dt^{2} - a^{2}(t)[dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})].$$
(8)

Theories written within the Effective Field Theory (EFT) formalism

- it allows to gather all of them in a very compact manner,
- it provides a neat separation between background and perturbation sectors
- and it permits to have under control any kind of instability.
- 2 The background equations are solved.
- We study the growth structure function assuming that the theories behave as ACDM at the present time.
- \circledast χ^2 analysis constrains the free parameters of our theories.
- In order to compare theories with different number of free parameters, κ, the reduced χ² is computed

$$\chi^2_{red} = \chi^2_{min} / \nu \tag{9}$$

イロト イヨト イヨト

being $\nu = N - \kappa - 1$ the number of degrees of freedom of the theory and N = # data points.

4D spatially flat, homogeneous and isotropic Universe in expansion described by the Robertson Walker (RW) metric in comoving coordinates

$$ds^{2} = dt^{2} - a^{2}(t)[dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})].$$
(8)

Theories written within the Effective Field Theory (EFT) formalism

- it allows to gather all of them in a very compact manner,
- it provides a neat separation between background and perturbation sectors
- and it permits to have under control any kind of instability.
- 2 The background equations are solved.
- We study the growth structure function assuming that the theories behave as ACDM at the present time.
- \circledast χ^2 analysis constrains the free parameters of our theories.
- In order to compare theories with different number of free parameters, $\kappa,$ the reduced χ^2 is computed

$$\chi^2_{red} = \chi^2_{min} / \nu \tag{9}$$

being $\nu = N - \kappa - 1$ the number of degrees of freedom of the theory and N = # data points.

4D spatially flat, homogeneous and isotropic Universe in expansion described by the Robertson Walker (RW) metric in comoving coordinates

$$ds^{2} = dt^{2} - a^{2}(t)[dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})].$$
(8)

Theories written within the Effective Field Theory (EFT) formalism

- it allows to gather all of them in a very compact manner,
- it provides a neat separation between background and perturbation sectors
- and it permits to have under control any kind of instability.

2 The background equations are solved.

- We study the growth structure function assuming that the theories behave as ACDM at the present time.
- $^{40}~\chi^2$ analysis constrains the free parameters of our theories.
- In order to compare theories with different number of free parameters, κ, the reduced χ² is computed

$$\chi^2_{red} = \chi^2_{min} / \nu \tag{9}$$

being $\nu = N - \kappa - 1$ the number of degrees of freedom of the theory and N = # data points.

4D spatially flat, homogeneous and isotropic Universe in expansion described by the Robertson Walker (RW) metric in comoving coordinates

$$ds^{2} = dt^{2} - a^{2}(t)[dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})].$$
(8)

Theories written within the Effective Field Theory (EFT) formalism

- it allows to gather all of them in a very compact manner,
- it provides a neat separation between background and perturbation sectors
- and it permits to have under control any kind of instability.
- 2 The background equations are solved.
- We study the growth structure function assuming that the theories behave as ACDM at the present time.
 - $-\chi^2$ analysis constrains the free parameters of our theories.
- In order to compare theories with different number of free parameters, κ , the reduced χ^2 is computed

$$\chi^2_{red} = \chi^2_{min} / \nu \tag{9}$$

being $\nu = N - \kappa - 1$ the number of degrees of freedom of the theory and N = # data points.

4D spatially flat, homogeneous and isotropic Universe in expansion described by the Robertson Walker (RW) metric in comoving coordinates

$$ds^{2} = dt^{2} - a^{2}(t)[dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})].$$
(8)

Theories written within the Effective Field Theory (EFT) formalism

- it allows to gather all of them in a very compact manner,
- it provides a neat separation between background and perturbation sectors
- and it permits to have under control any kind of instability.
- 2 The background equations are solved.
- We study the growth structure function assuming that the theories behave as ACDM at the present time.
- 4 χ^2 analysis constrains the free parameters of our theories.
 - In order to compare theories with different number of free parameters, κ , the reduced χ^2 is computed

$$\chi^2_{red} = \chi^2_{min} / \nu \tag{9}$$

イロト 不得下 イヨト イヨト

being $\nu = N - \kappa - 1$ the number of degrees of freedom of the theory and N = # data points.

4D spatially flat, homogeneous and isotropic Universe in expansion described by the Robertson Walker (RW) metric in comoving coordinates

$$ds^{2} = dt^{2} - a^{2}(t)[dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})].$$
(8)

Theories written within the Effective Field Theory (EFT) formalism

- it allows to gather all of them in a very compact manner,
- it provides a neat separation between background and perturbation sectors
- and it permits to have under control any kind of instability.
- 2 The background equations are solved.
- We study the growth structure function assuming that the theories behave as ACDM at the present time.
- (4) χ^2 analysis constrains the free parameters of our theories.
- **3** In order to compare theories with different number of free parameters, κ , the reduced χ^2 is computed

$$\chi^2_{red} = \chi^2_{min}/\nu \tag{9}$$

being $\nu = N - \kappa - 1$ the number of degrees of freedom of the theory and N = # data points.

Theories under analysis

2

* ロ > * 個 > * 注 > * 注 >

$\Lambda {\rm CDM}$

э.

▲口> ▲圖> ▲国> ▲国>

• Action :
$$S_{\Lambda CDM} = \int d^4 x \sqrt{|g|} \frac{M_{Pl}^2}{2} [R - 2\Lambda].$$

• Exact solution of the Friedmann equation for flat Universe with matter and cosmological constant (c.c) :

$$a(t) = \left(\frac{\Omega_{m,0}}{\Omega_{\Lambda,0}}\right) \left[\sinh\left(\frac{3\sqrt{\Omega_{\Lambda,0}}}{2}H_0t\right)\right]^{2/3}$$
(10)

being $\Omega_{m,0}$ and $\Omega_{\Lambda,0}$ the matter and the c.c content at the present time, respectively, and H_0 is the Hubble parameter today.

• Perturbation equation.

$$\ddot{\delta} + 2H\dot{\delta} - 4\pi G\rho_m \delta = 0, \tag{11}$$

(日) (周) (三) (三)

Initial conditions (I.C.) are set in the past (z = 1000) when $\delta(t) \simeq a(t)$.

• Growth structure function is computed.

•
$$\chi^2$$
 analysis : $\chi^2_{min} = 11.689~(\chi^2_{red} = 0.899)$ at $\Omega_{m,0} = 0.302$ and $\Omega_{\Lambda,0} = 0.698$.

э

• Action :
$$S_{\Lambda CDM} = \int d^4 x \sqrt{|g|} \frac{M_{Pl}^2}{2} [R - 2\Lambda].$$

• Exact solution of the Friedmann equation for flat Universe with matter and cosmological constant (c.c) :

$$a(t) = \left(\frac{\Omega_{m,0}}{\Omega_{\Lambda,0}}\right) \left[\sinh\left(\frac{3\sqrt{\Omega_{\Lambda,0}}}{2}H_0t\right)\right]^{2/3}$$
(10)

being $\Omega_{m,0}$ and $\Omega_{\Lambda,0}$ the matter and the c.c content at the present time, respectively, and H_0 is the Hubble parameter today.

• Perturbation equation.

$$\ddot{\delta} + 2H\dot{\delta} - 4\pi G\rho_m \delta = 0, \tag{11}$$

(日) (周) (三) (三)

Initial conditions (I.C.) are set in the past (z = 1000) when $\delta(t) \simeq a(t)$.

• Growth structure function is computed.

•
$$\chi^2$$
 analysis : $\chi^2_{min} = 11.689~(\chi^2_{red} = 0.899)$ at $\Omega_{m,0} = 0.302$ and $\Omega_{\Lambda,0} = 0.698$.

• Action :
$$S_{\Lambda CDM} = \int d^4 x \sqrt{|g|} \frac{M_{Pl}^2}{2} [R - 2\Lambda].$$

• Exact solution of the Friedmann equation for flat Universe with matter and cosmological constant (c.c) :

$$a(t) = \left(\frac{\Omega_{m,0}}{\Omega_{\Lambda,0}}\right) \left[\sinh\left(\frac{3\sqrt{\Omega_{\Lambda,0}}}{2}H_0t\right)\right]^{2/3}$$
(10)

being $\Omega_{m,0}$ and $\Omega_{\Lambda,0}$ the matter and the c.c content at the present time, respectively, and H_0 is the Hubble parameter today.

• Perturbation equation.

$$\ddot{\delta} + 2H\dot{\delta} - 4\pi G\rho_m \delta = 0, \tag{11}$$

Initial conditions (I.C.) are set in the past (z = 1000) when $\delta(t) \simeq a(t)$.

Growth structure function is computed.

•
$$\chi^2$$
 analysis : $\chi^2_{min} = 11.689~(\chi^2_{red} = 0.899)$ at $\Omega_{m,0} = 0.302$ and $\Omega_{\Lambda,0} = 0.698$.

э

• • = • • = •

• Action :
$$S_{\Lambda CDM} = \int d^4 x \sqrt{|g|} \frac{M_{Pl}^2}{2} [R - 2\Lambda].$$

• Exact solution of the Friedmann equation for flat Universe with matter and cosmological constant (c.c) :

$$a(t) = \left(\frac{\Omega_{m,0}}{\Omega_{\Lambda,0}}\right) \left[\sinh\left(\frac{3\sqrt{\Omega_{\Lambda,0}}}{2}H_0t\right)\right]^{2/3}$$
(10)

being $\Omega_{m,0}$ and $\Omega_{\Lambda,0}$ the matter and the c.c content at the present time, respectively, and H_0 is the Hubble parameter today.

Perturbation equation.

$$\ddot{\delta} + 2H\dot{\delta} - 4\pi G\rho_m \delta = 0, \tag{11}$$

イロト イポト イヨト イヨト

Initial conditions (I.C.) are set in the past (z = 1000) when $\delta(t) \simeq a(t)$.

• Growth structure function is computed.

• χ^2 analysis : $\chi^2_{min} = 11.689 \; (\chi^2_{red} = 0.899)$ at $\Omega_{m,0} = 0.302$ and $\Omega_{\Lambda,0} = 0.698$.

• Action :
$$S_{\Lambda CDM} = \int d^4 x \sqrt{|g|} \frac{M_{Pl}^2}{2} [R - 2\Lambda].$$

• Exact solution of the Friedmann equation for flat Universe with matter and cosmological constant (c.c) :

$$a(t) = \left(\frac{\Omega_{m,0}}{\Omega_{\Lambda,0}}\right) \left[\sinh\left(\frac{3\sqrt{\Omega_{\Lambda,0}}}{2}H_0t\right)\right]^{2/3}$$
(10)

being $\Omega_{m,0}$ and $\Omega_{\Lambda,0}$ the matter and the c.c content at the present time, respectively, and H_0 is the Hubble parameter today.

• Perturbation equation.

$$\ddot{\delta} + 2H\dot{\delta} - 4\pi G\rho_m \delta = 0, \tag{11}$$

Initial conditions (I.C.) are set in the past (z = 1000) when $\delta(t) \simeq a(t)$.

Growth structure function is computed.

•
$$\chi^2$$
 analysis : $\chi^2_{min} = 11.689 \; (\chi^2_{red} = 0.899)$ at $\Omega_{m,0} = 0.302$ and $\Omega_{\Lambda,0} = 0.698$.

3

$\omega {\rm CDM}$

э.

▲口 > ▲圖 > ▲ 国 > ▲ 国 > -

$\omega {\rm CDM}$

- Characterized by a constant equation of state parameter, $\omega \equiv const.$ ACDM belongs to this kind of theories.
- The Friedmann equation reads as

$$\left(\frac{a'(\tau)}{a(\tau)}\right)^2 = \Omega_{m,0}a(\tau)^{-3} + \Omega_{\Lambda,0}a(\tau)^{-3(1+\omega)},\tag{12}$$

being prime the derivative w.r.t. the dimensionless time, $\tau = H_0 t$.

• Matter density perturbation equation, expression (4) :

$$\delta^{\prime\prime} + 2\frac{H}{H_0}\delta^\prime - \frac{3}{2}G_{eff}\Omega_m(\tau)\delta = 0, \qquad (13)$$

イロト イヨト イヨト イヨト

being $G_{eff} = 1$, particularizing (5). The I.C. are imposed today $\delta(\tau_{today}) = \delta_{\Lambda CDM}(\tau_{today})$ and $\delta'(\tau_{today}) = \delta'_{\Lambda CDM}(\tau_{today})$.

- Stability conditions (6) and (7) are satisfied.
- The growth structure function is computed and the χ^2 analysis implemented.
$\omega {\rm CDM}$

- Characterized by a constant equation of state parameter, $\omega \equiv const.$ ACDM belongs to this kind of theories.
- The Friedmann equation reads as

$$\left(\frac{a'(\tau)}{a(\tau)}\right)^2 = \Omega_{m,0}a(\tau)^{-3} + \Omega_{\Lambda,0}a(\tau)^{-3(1+\omega)},\tag{12}$$

being prime the derivative w.r.t. the dimensionless time, $\tau = H_0 t$.

• Matter density perturbation equation, expression (4) :

$$\delta^{\prime\prime} + 2\frac{H}{H_0}\delta^\prime - \frac{3}{2}G_{eff}\Omega_m(\tau)\delta = 0,$$
(13)

(日) (周) (三) (三)

being $G_{eff} = 1$, particularizing (5). The I.C. are imposed today $\delta(\tau_{today}) = \delta_{\Lambda CDM}(\tau_{today})$ and $\delta'(\tau_{today}) = \delta'_{\Lambda CDM}(\tau_{today})$.

- Stability conditions (6) and (7) are satisfied.
- The growth structure function is computed and the χ^2 analysis implemented.

$\omega {\rm CDM}$

- Characterized by a constant equation of state parameter, $\omega \equiv const.$ ACDM belongs to this kind of theories.
- The Friedmann equation reads as

$$\left(\frac{a'(\tau)}{a(\tau)}\right)^2 = \Omega_{m,0}a(\tau)^{-3} + \Omega_{\Lambda,0}a(\tau)^{-3(1+\omega)},\tag{12}$$

being prime the derivative w.r.t. the dimensionless time, $\tau = H_0 t$.

• Matter density perturbation equation, expression (4) :

$$\delta^{\prime\prime} + 2\frac{H}{H_0}\delta^{\prime} - \frac{3}{2}G_{eff}\Omega_m(\tau)\delta = 0, \qquad (13)$$

being $G_{eff} = 1$, particularizing (5). The I.C. are imposed today $\delta(\tau_{today}) = \delta_{\Lambda CDM}(\tau_{today})$ and $\delta'(\tau_{today}) = \delta'_{\Lambda CDM}(\tau_{today})$.

- Stability conditions (6) and (7) are satisfied.
- The growth structure function is computed and the χ^2 analysis implemented.

$\omega {\rm CDM}$

- Characterized by a constant equation of state parameter, $\omega \equiv const.$ ACDM belongs to this kind of theories.
- The Friedmann equation reads as

$$\left(\frac{a'(\tau)}{a(\tau)}\right)^2 = \Omega_{m,0}a(\tau)^{-3} + \Omega_{\Lambda,0}a(\tau)^{-3(1+\omega)},\tag{12}$$

being prime the derivative w.r.t. the dimensionless time, $\tau = H_0 t$.

• Matter density perturbation equation, expression (4) :

$$\delta^{\prime\prime} + 2\frac{H}{H_0}\delta^{\prime} - \frac{3}{2}G_{eff}\Omega_m(\tau)\delta = 0, \qquad (13)$$

being $G_{eff} = 1$, particularizing (5). The I.C. are imposed today $\delta(\tau_{today}) = \delta_{\Lambda CDM}(\tau_{today})$ and $\delta'(\tau_{today}) = \delta'_{\Lambda CDM}(\tau_{today})$.

- Stability conditions (6) and (7) are satisfied.
- The growth structure function is computed and the χ^2 analysis implemented.

ωCDM

- Characterized by a constant equation of state parameter, $\omega \equiv const.$ ACDM belongs to this kind of theories.
- The Friedmann equation reads as

$$\left(\frac{a'(\tau)}{a(\tau)}\right)^2 = \Omega_{m,0}a(\tau)^{-3} + \Omega_{\Lambda,0}a(\tau)^{-3(1+\omega)},\tag{12}$$

being prime the derivative w.r.t. the dimensionless time, $\tau = H_0 t$.

• Matter density perturbation equation, expression (4) :

$$\delta^{\prime\prime} + 2\frac{H}{H_0}\delta^{\prime} - \frac{3}{2}G_{eff}\Omega_m(\tau)\delta = 0, \qquad (13)$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

being $G_{eff} = 1$, particularizing (5). The I.C. are imposed today $\delta(\tau_{today}) = \delta_{\Lambda CDM}(\tau_{today})$ and $\delta'(\tau_{today}) = \delta'_{\Lambda CDM}(\tau_{today})$.

- Stability conditions (6) and (7) are satisfied.
- The growth structure function is computed and the χ^2 analysis implemented.

$\omega {\rm CDM}$ results.

Parameters $\{\Omega_{m,0}, \omega\}$.

Result of the χ^2 test for $\omega {\rm CDM}$ models. Confidence levels 68%, 95% and 99% are plotted.

• The minimum $\chi^2_{min} = 11.216 \ (\chi^2_{red} = 0.935)$ is found at $\Omega_{m,0} = 0.27, \ \omega = -0.59$. • $\Lambda \text{CDM}, \ \omega = -1$, is not the best-fitting model of ωCDM theory.

P3TMA

2

イロト イ団ト イヨト イヨト

S. Tsujikawa, Class. Quant. Grav. 30 (2013) 214003 [arXiv :1304.1961 [gr-qc]].

• Action :
$$S_{\phi} = \int d^4 x \sqrt{|g|} \left[\frac{M_{Pl}^2}{2} R + \frac{1}{2} (\partial_{\mu} \phi) (\partial^{\mu} \phi) - V(\phi) \right].$$

Background and field equations :

$$\left(\frac{a'(\tau)}{a(\tau)}\right)^2 = \frac{\tilde{\phi}'^2}{6} + \tilde{V}(\tilde{\phi}) + \Omega_{m,0}a^{-3}(\tau), \tag{14}$$

$$\tilde{\phi}^{\prime\prime} + 3\frac{a^{\prime}}{a}\tilde{\phi}^{\prime} + \frac{\partial\tilde{V}(\tilde{\phi})}{\partial\tilde{\phi}} = 0$$
(15)

<ロ> (日) (日) (日) (日) (日)

where prime is the dimensionless time derivative, $ilde{\phi}=\sqrt{8\pi G}\phi$ and $ilde{V}(ilde{\phi})$ is the dimensionless potential.

The I.C. are imposed in the past, $a(0) = 10^{-3}$, $\phi(0) = 0.5$ and its time derivative $\phi'(0) = 0$ (G. Barro Calvo and A. L. Maroto, Phys. Rev. D 74 (2006) 083519 [astro-ph/0604409]).

- Matter density perturbation (4). $G_{eff} = 1$. I.C. $\delta(\tau_{today}) = \delta_{\Lambda CDM}(\tau_{today})$ and $\delta'(\tau_{today}) = \delta'_{\Lambda CDM}(\tau_{today})$.
- Stability conditions (6) and (7) are satisfied.
- Models : Inverse Power-Law (IPL) and Double Exponential Potential (2EP).
- The growth structure function is computed and the χ^2 analysis implemented.

P3TMA

S. Tsujikawa, Class. Quant. Grav. 30 (2013) 214003 [arXiv :1304.1961 [gr-qc]].

• Action :
$$S_{\phi} = \int d^4 x \sqrt{|g|} \left[\frac{M_{Pl}^2}{2} R + \frac{1}{2} (\partial_{\mu} \phi) (\partial^{\mu} \phi) - V(\phi) \right].$$

Background and field equations :

$$\left(\frac{a'(\tau)}{a(\tau)}\right)^2 = \frac{\tilde{\phi}'^2}{6} + \tilde{V}(\tilde{\phi}) + \Omega_{m,0}a^{-3}(\tau), \tag{14}$$

$$\tilde{\phi}^{\prime\prime} + 3\frac{a^{\prime}}{a}\tilde{\phi}^{\prime} + \frac{\partial\tilde{V}(\tilde{\phi})}{\partial\tilde{\phi}} = 0$$
(15)

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

where prime is the dimensionless time derivative, $\tilde{\phi} = \sqrt{8\pi G}\phi$ and $\tilde{V}(\tilde{\phi})$ is the dimensionless potential.

The I.C. are imposed in the past, $a(0) = 10^{-3}$, $\phi(0) = 0.5$ and its time derivative $\phi'(0) = 0$ (G. Barro Calvo and A. L. Maroto, Phys. Rev. D 74 (2006) 083519 [astro-ph/0604409]).

- Matter density perturbation (4). $G_{eff} = 1$. I.C. $\delta(\tau_{today}) = \delta_{\Lambda CDM}(\tau_{today})$ and $\delta'(\tau_{today}) = \delta'_{\Lambda CDM}(\tau_{today})$.
- Stability conditions (6) and (7) are satisfied.
- Models : Inverse Power-Law (IPL) and Double Exponential Potential (2EP).
- The growth structure function is computed and the χ^2 analysis implemented.

P3TMA

S. Tsujikawa, Class. Quant. Grav. 30 (2013) 214003 [arXiv :1304.1961 [gr-qc]].

• Action :
$$S_{\phi} = \int d^4 x \sqrt{|g|} \left[\frac{M_{Pl}^2}{2} R + \frac{1}{2} (\partial_{\mu} \phi) (\partial^{\mu} \phi) - V(\phi) \right].$$

Background and field equations :

$$\left(\frac{a'(\tau)}{a(\tau)}\right)^2 = \frac{\tilde{\phi}'^2}{6} + \tilde{V}(\tilde{\phi}) + \Omega_{m,0}a^{-3}(\tau), \tag{14}$$

$$\tilde{\phi}^{\prime\prime} + 3\frac{a^{\prime}}{a}\tilde{\phi}^{\prime} + \frac{\partial\tilde{V}(\tilde{\phi})}{\partial\tilde{\phi}} = 0$$
(15)

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

where prime is the dimensionless time derivative, $\tilde{\phi} = \sqrt{8\pi G}\phi$ and $\tilde{V}(\tilde{\phi})$ is the dimensionless potential.

The I.C. are imposed in the past, $a(0) = 10^{-3}$, $\phi(0) = 0.5$ and its time derivative $\phi'(0) = 0$ (G. Barro Calvo and A. L. Maroto, Phys. Rev. D 74 (2006) 083519 [astro-ph/0604409]).

• Matter density perturbation (4). $G_{eff} = 1$. I.C. $\delta(\tau_{today}) = \delta_{\Lambda CDM}(\tau_{today})$ and $\delta'(\tau_{today}) = \delta'_{\Lambda CDM}(\tau_{today})$.

- Stability conditions (6) and (7) are satisfied.
- Models : Inverse Power-Law (IPL) and Double Exponential Potential (2EP).
- The growth structure function is computed and the χ^2 analysis implemented.

P3TMA

S. Tsujikawa, Class. Quant. Grav. 30 (2013) 214003 [arXiv :1304.1961 [gr-qc]].

• Action :
$$S_{\phi} = \int d^4 x \sqrt{|g|} \left[\frac{M_{Pl}^2}{2} R + \frac{1}{2} (\partial_{\mu} \phi) (\partial^{\mu} \phi) - V(\phi) \right].$$

Background and field equations :

$$\left(\frac{a'(\tau)}{a(\tau)}\right)^2 = \frac{\tilde{\phi}'^2}{6} + \tilde{V}(\tilde{\phi}) + \Omega_{m,0}a^{-3}(\tau), \tag{14}$$

$$\tilde{\phi}^{\prime\prime} + 3\frac{a^{\prime}}{a}\tilde{\phi}^{\prime} + \frac{\partial\tilde{V}(\tilde{\phi})}{\partial\tilde{\phi}} = 0$$
(15)

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

where prime is the dimensionless time derivative, $\tilde{\phi} = \sqrt{8\pi G}\phi$ and $\tilde{V}(\tilde{\phi})$ is the dimensionless potential.

The I.C. are imposed in the past, $a(0) = 10^{-3}$, $\phi(0) = 0.5$ and its time derivative $\phi'(0) = 0$ (G. Barro Calvo and A. L. Maroto, Phys. Rev. D 74 (2006) 083519 [astro-ph/0604409]).

• Matter density perturbation (4). $G_{eff} = 1$. I.C. $\delta(\tau_{today}) = \delta_{\Lambda CDM}(\tau_{today})$ and $\delta'(\tau_{today}) = \delta'_{\Lambda CDM}(\tau_{today})$.

- Stability conditions (6) and (7) are satisfied.
- Models : Inverse Power-Law (IPL) and Double Exponential Potential (2EP).
- The growth structure function is computed and the χ^2 analysis implemented.

P3TMA

S. Tsujikawa, Class. Quant. Grav. 30 (2013) 214003 [arXiv :1304.1961 [gr-qc]].

• Action :
$$S_{\phi} = \int d^4 x \sqrt{|g|} \left[\frac{M_{Pl}^2}{2} R + \frac{1}{2} (\partial_{\mu} \phi) (\partial^{\mu} \phi) - V(\phi) \right].$$

• Background and field equations :

$$\left(\frac{a'(\tau)}{a(\tau)}\right)^2 = \frac{\tilde{\phi}'^2}{6} + \tilde{V}(\tilde{\phi}) + \Omega_{m,0}a^{-3}(\tau), \tag{14}$$

$$\tilde{\phi}^{\prime\prime} + 3\frac{a^{\prime}}{a}\tilde{\phi}^{\prime} + \frac{\partial\tilde{V}(\tilde{\phi})}{\partial\tilde{\phi}} = 0$$
(15)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

where prime is the dimensionless time derivative, $\tilde{\phi} = \sqrt{8\pi G}\phi$ and $\tilde{V}(\tilde{\phi})$ is the dimensionless potential.

The I.C. are imposed in the past, $a(0) = 10^{-3}$, $\phi(0) = 0.5$ and its time derivative $\phi'(0) = 0$ (G. Barro Calvo and A. L. Maroto, Phys. Rev. D 74 (2006) 083519 [astro-ph/0604409]).

• Matter density perturbation (4). $G_{eff} = 1$. I.C. $\delta(\tau_{today}) = \delta_{\Lambda CDM}(\tau_{today})$ and $\delta'(\tau_{today}) = \delta'_{\Lambda CDM}(\tau_{today})$.

- Stability conditions (6) and (7) are satisfied.
- Models : Inverse Power-Law (IPL) and Double Exponential Potential (2EP).

• The growth structure function is computed and the χ^2 analysis implemented.

P3TMA

S. Tsujikawa, Class. Quant. Grav. 30 (2013) 214003 [arXiv :1304.1961 [gr-qc]].

• Action :
$$S_{\phi} = \int d^4 x \sqrt{|g|} \left[\frac{M_{Pl}^2}{2} R + \frac{1}{2} (\partial_{\mu} \phi) (\partial^{\mu} \phi) - V(\phi) \right].$$

Background and field equations :

$$\left(\frac{a'(\tau)}{a(\tau)}\right)^2 = \frac{\tilde{\phi}'^2}{6} + \tilde{V}(\tilde{\phi}) + \Omega_{m,0}a^{-3}(\tau), \tag{14}$$

$$\tilde{\phi}^{\prime\prime} + 3\frac{a^{\prime}}{a}\tilde{\phi}^{\prime} + \frac{\partial\tilde{V}(\tilde{\phi})}{\partial\tilde{\phi}} = 0$$
(15)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

where prime is the dimensionless time derivative, $\tilde{\phi} = \sqrt{8\pi G}\phi$ and $\tilde{V}(\tilde{\phi})$ is the dimensionless potential.

The I.C. are imposed in the past, $a(0) = 10^{-3}$, $\phi(0) = 0.5$ and its time derivative $\phi'(0) = 0$ (G. Barro Calvo and A. L. Maroto, Phys. Rev. D 74 (2006) 083519 [astro-ph/0604409]).

- Matter density perturbation (4). $G_{eff} = 1$. I.C. $\delta(\tau_{today}) = \delta_{\Lambda CDM}(\tau_{today})$ and $\delta'(\tau_{today}) = \delta'_{\Lambda CDM}(\tau_{today})$.
- Stability conditions (6) and (7) are satisfied.
- Models : Inverse Power-Law (IPL) and Double Exponential Potential (2EP).
- The growth structure function is computed and the χ^2 analysis implemented.

P3TMA

IPL result.

Potential : $\tilde{V}(\tilde{\phi}) = A/\tilde{\phi}^{\alpha}$, parameters $\{\Omega_{m,0}, \alpha\}$. $A = A(\Omega_{m,0}, \alpha)$.

Result of the χ^2 test for IPL models. Confidence levels 68%, 95% and 99% are plotted.

- The minimum $\chi^2_{min} = 11.213$ ($\chi^2_{red} = 0.934$) is found at $\Omega_{m,0} = 0.265$, $\alpha = 3$ and A = 8.032.
- lpha cannot take negative values since the potential would stop being an inverse power-law.

P3TMA

2EP result.

Potential : $\tilde{V}(\tilde{\phi}) = A(e^{\alpha \tilde{\phi}} + e^{\beta \tilde{\phi}})$, parameters $\{\Omega_{m,0}, \alpha, \beta\}$. $A = A(\Omega_{m,0}, \alpha)$.

Result of the χ^2 test for 2EP models. C.L. 68%, 95% and 99%.

0 < α < 0.8 since ω_φ < -0.8 and β > 5.5 due to Nucleosynthesis constraints, T. Barreiro, E. J. Copeland and N. J. Nunes, Phys. Rev. D 61 (2000) 127301 [astro-ph/9910214].
 β = 20 G. Barro Calvo and A. L. Maroto, Phys. Rev. D 74 (2006) 083519 [astro-ph/0604409].
 χ²_{min} = 11.216 (χ²_{red} = 1.361) is found at Ω_{m,0} = 0.359, β = 0.6 and A = 0.797.

P3TMA

Jordan Fierz Brans Dicke

2

* ロ > * 個 > * 注 > * 注 >

B. Boisseau, G. Esposito-Farese, D. Polarski and A. A. Starobinsky, Phys. Rev. Lett. 85 (2000) 2236 [gr-qc/0001066].

The action in the Jordan Frame reads as

$$S_{JFBD} = \int d^4 x rac{\sqrt{|g|}}{16\pi G} \left(\phi R + rac{\omega_{BD}}{\phi} g^{\mu
u} \partial_\mu \phi \partial_
u \phi - V(\phi)
ight),$$

being $\omega_{BD} = -\frac{3-1/\alpha^2}{2}$ the characteristic parameter of JFBD theories.

- Background evolution. The contribution of ϕ to H(t) is quite negligible, $\phi'^2/H \sim 10^{-11} - 10^{-17}$. Then, the solution is $a(t) \simeq a_{\Lambda \text{CDM}}(t)$, see (10).
- Density perturbation equation (4). G_{eff} (5) is function of time and Fourier modes, k,

$$G_{eff} = \frac{1}{G} \frac{1}{8\pi M^2} \frac{2C + 2\mu^2 + Y_{IR}(t,k)}{2C + \frac{3}{2}\mu^2 + Y_{IR}(t,k)}$$
(16)

but we assume $k \gtrsim 100 {\rm hMpc^{-1}}$. Hence the dependence of G_{eff} on the k modes is negligible.

- Stable theory, conditions (6) and (7) are satisfied.
- The growth structure function is computed and the χ^2 analysis implemented.

B. Boisseau, G. Esposito-Farese, D. Polarski and A. A. Starobinsky, Phys. Rev. Lett. 85 (2000) 2236 [gr-qc/0001066].

The action in the Jordan Frame reads as

$$S_{JFBD} = \int d^4 x rac{\sqrt{|g|}}{16\pi G} \left(\phi R + rac{\omega_{BD}}{\phi} g^{\mu
u} \partial_\mu \phi \partial_
u \phi - V(\phi)
ight),$$

being $\omega_{BD} = -\frac{3-1/\alpha^2}{2}$ the characteristic parameter of JFBD theories.

- Background evolution. The contribution of ϕ to H(t) is quite negligible, $\phi'^2/H \sim 10^{-11} - 10^{-17}$. Then, the solution is $a(t) \simeq a_{\Lambda CDM}(t)$, see (10).
- Density perturbation equation (4). G_{eff} (5) is function of time and Fourier modes, k,

$$G_{eff} = \frac{1}{G} \frac{1}{8\pi M^2} \frac{2C + 2\mu^2 + Y_{IR}(t,k)}{2C + \frac{3}{2}\mu^2 + Y_{IR}(t,k)}$$
(16)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

but we assume $k \gtrsim 100 h {\rm Mpc}^{-1}$. Hence the dependence of G_{eff} on the k modes is negligible.

- Stable theory, conditions (6) and (7) are satisfied.
- The growth structure function is computed and the χ^2 analysis implemented.

B. Boisseau, G. Esposito-Farese, D. Polarski and A. A. Starobinsky, Phys. Rev. Lett. 85 (2000) 2236 [gr-qc/0001066].

The action in the Jordan Frame reads as

$$S_{JFBD} = \int d^4 x rac{\sqrt{|g|}}{16\pi G} \left(\phi R + rac{\omega_{BD}}{\phi} g^{\mu
u} \partial_\mu \phi \partial_
u \phi - V(\phi)
ight),$$

being $\omega_{BD} = -\frac{3-1/lpha^2}{2}$ the characteristic parameter of JFBD theories.

- Background evolution. The contribution of ϕ to H(t) is quite negligible, $\phi'^2/H \sim 10^{-11} - 10^{-17}$. Then, the solution is $a(t) \simeq a_{\Lambda \text{CDM}}(t)$, see (10).
- Density perturbation equation (4). G_{eff} (5) is function of time and Fourier modes, k,

$$G_{eff} = \frac{1}{G} \frac{1}{8\pi M^2} \frac{2C + 2\mu^2 + Y_{IR}(t,k)}{2C + \frac{3}{2}\mu^2 + Y_{IR}(t,k)}$$
(16)

イロト 不得下 イヨト イヨト

but we assume $k\gtrsim 100 {\rm hMpc^{-1}}$. Hence the dependence of G_{eff} on the k modes is negligible.

- Stable theory, conditions (6) and (7) are satisfied.
- The growth structure function is computed and the χ^2 analysis implemented.

B. Boisseau, G. Esposito-Farese, D. Polarski and A. A. Starobinsky, Phys. Rev. Lett. 85 (2000) 2236 [gr-qc/0001066].

The action in the Jordan Frame reads as

$$S_{JFBD} = \int d^4 x rac{\sqrt{|g|}}{16\pi G} \left(\phi R + rac{\omega_{BD}}{\phi} g^{\mu
u} \partial_\mu \phi \partial_
u \phi - V(\phi)
ight),$$

being $\omega_{BD} = -\frac{3-1/lpha^2}{2}$ the characteristic parameter of JFBD theories.

- Background evolution. The contribution of ϕ to H(t) is quite negligible, $\phi'^2/H \sim 10^{-11} - 10^{-17}$. Then, the solution is $a(t) \simeq a_{\Lambda \text{CDM}}(t)$, see (10).
- Density perturbation equation (4). G_{eff} (5) is function of time and Fourier modes, k,

$$G_{eff} = \frac{1}{G} \frac{1}{8\pi M^2} \frac{2C + 2\mu^2 + Y_{IR}(t,k)}{2C + \frac{3}{2}\mu^2 + Y_{IR}(t,k)}$$
(16)

イロト 不得下 イヨト イヨト

but we assume $k\gtrsim 100 {\rm hMpc^{-1}}$. Hence the dependence of G_{eff} on the k modes is negligible.

- Stable theory, conditions (6) and (7) are satisfied.
- The growth structure function is computed and the χ^2 analysis implemented.

B. Boisseau, G. Esposito-Farese, D. Polarski and A. A. Starobinsky, Phys. Rev. Lett. 85 (2000) 2236 [gr-qc/0001066].

The action in the Jordan Frame reads as

$$S_{JFBD} = \int d^4 x rac{\sqrt{|g|}}{16\pi G} \left(\phi R + rac{\omega_{BD}}{\phi} g^{\mu
u} \partial_\mu \phi \partial_
u \phi - V(\phi)
ight),$$

being $\omega_{BD}=-\frac{3-1/\alpha^2}{2}$ the characteristic parameter of JFBD theories.

- Background evolution. The contribution of ϕ to H(t) is quite negligible, $\phi'^2/H \sim 10^{-11} - 10^{-17}$. Then, the solution is $a(t) \simeq a_{\Lambda CDM}(t)$, see (10).
- Density perturbation equation (4). G_{eff} (5) is function of time and Fourier modes, k,

$$G_{eff} = \frac{1}{G} \frac{1}{8\pi M^2} \frac{2C + 2\mu^2 + Y_{IR}(t,k)}{2C + \frac{3}{2}\mu^2 + Y_{IR}(t,k)}$$
(16)

イロト 不得下 イヨト イヨト

but we assume $k\gtrsim 100 {\rm hMpc^{-1}}$. Hence the dependence of G_{eff} on the k modes is negligible.

- Stable theory, conditions (6) and (7) are satisfied.
- The growth structure function is computed and the χ^2 analysis implemented.

JFBD results.

Potential : $V(\phi) = 0$, parameters $\{\Omega_{m,0}, \alpha\}$. $\omega_{BD} = -\frac{3-1/\alpha^2}{2}$.

Result of the χ^2 test for JFBD models. C.L. 68%, 95% and 99%.

• Cassini Mission, B. Bertotti, L. less and P. Tortora, Nature 425,374-376 limits $\alpha < 3.45 \cdot 10^{-3}$. • $\chi^2_{min} = 11.6884 \ (\chi^2_{red} = 0.974)$ is found at $\Omega_{m,0} = 0.31, \ \alpha = 3.00 \cdot 10^{-3}$ and $\omega_{BD} = 5.5 \cdot 10^4$.

P3TMA

э

Results and Conclusions

æ

* ロ > * 個 > * 注 > * 注 >

Results

Background evolution of the best-fitting models.

Reduced Hubble rate evolution. All the models present a similar tendency.

- The reduced Hubble parameter today is equal to one, $1 = \Omega_{m,0} + \Omega_{\phi,0}$.
- Every model causes acceleration, q(z₀) = − ^{a₀}/_{a₀H₀²} < 0, but ΛCDM is the one closer to the observed value q_{obs}(0) = −0.55.

P3TMA

Results

Growth structure of the best-fitting models.

Theory	χ^2_{red}	$\Omega_{m,0}$	Second parameter	Third parameter
ΛCDM	0.899	$0.302\substack{+0.068\\-0.012}$	$\omega = -1$	_
IPL	0.934	$0.265\substack{+0.075\\-0.065}$	$\alpha = 3^{+7}_{-3}$	$A = 8.032_{-7.257}^{+10^8}$
2EP	1.361	$0.359\substack{+0.010\\-0.049}$	$\alpha = 0.6^{+0.2}_{-0.5}, \beta = 20$	$A = 0.797^{+0.010}_{-0.096}$
$\omega {\rm CDM}$	0.935	$0.270\substack{+0.070 \\ -0.070}$	$\omega = -0.59^{+0.09}_{-0.91}$	-
JFBD	0.974	$0.310\substack{+0.030\\-0.030}$	$\alpha = (3.00 \cdot 10^{-3})^{+0.00345}_{-0.00010}$	$\omega_{BD} = (5.5 \cdot 10^4)^{+6.0 \cdot 10^4}_{-1.3 \cdot 10^4}$

The table presents every model, their reduced χ^2 value and the best range of parameters (C.L. 68%).

- χ^2_{red} is worse for models with larger number of free parameters.
- The best-fitting model is ΛCDM (lowest $\chi^2_{red} = 0.899$) followed by IPL.

イロト イヨト イヨト

Results

Growth structure of the best-fitting models.

Growth structure function and datapoints Table 2.

- All the models show the same value as ΛCDM at the present time, as we imposed by assumption, but they deviate in the past.
- JFBD curve very close to $\Lambda {
 m CDM}$ but it is not the second best-fitting model.
- 2EP : the most deviated model and the worst fitting.

P3TMA

- We computed the growth structure function for ω CDM, Quintessence and Jordan Fierz Brans Dicke theories.
- We solved the background and perturbation equations by assuming that initially theories behave as ΛCDM.
- (a) A χ^2 analysis is implemented by using galaxy power spectra data Table 2.
- $\textcircled{\sc opt}$ We realized that ΛCDM is not the best-fitting model of ωCDM theory.
- Results show that Λ CDM is the best-fitting model with $\Omega_{m,0} = 0.302$ followed by the Inverse Power-Law model of Quintessence { $\Omega_{m,0} = 0.265, \alpha = 3$ }.

- We computed the growth structure function for ω CDM, Quintessence and Jordan Fierz Brans Dicke theories.
- We solved the background and perturbation equations by assuming that initially theories behave as ΛCDM.
- A χ² analysis is implemented by using galaxy power spectra data Table 2.
- $\textcircled{\sc 0}$ We realized that ΛCDM is not the best-fitting model of ωCDM theory.
- Results show that Λ CDM is the best-fitting model with $\Omega_{m,0} = 0.302$ followed by the Inverse Power-Law model of Quintessence { $\Omega_{m,0} = 0.265, \alpha = 3$ }.

- We computed the growth structure function for ω CDM, Quintessence and Jordan Fierz Brans Dicke theories.
- **②** We solved the background and perturbation equations by assuming that initially theories behave as ΛCDM .
- A χ^2 analysis is implemented by using galaxy power spectra data Table 2.
- $\textcircled{\sc 0}$ We realized that $\Lambda {\rm CDM}$ is not the best-fitting model of $\omega {\rm CDM}$ theory.
- Results show that Λ CDM is the best-fitting model with $\Omega_{m,0} = 0.302$ followed by the Inverse Power-Law model of Quintessence { $\Omega_{m,0} = 0.265, \alpha = 3$ }.

- We computed the growth structure function for ω CDM, Quintessence and Jordan Fierz Brans Dicke theories.
- **②** We solved the background and perturbation equations by assuming that initially theories behave as ΛCDM .
- A χ^2 analysis is implemented by using galaxy power spectra data Table 2.
- $\textcircled{\sc 0}$ We realized that $\Lambda {\rm CDM}$ is not the best-fitting model of $\omega {\rm CDM}$ theory.
- Is Results show that ∧CDM is the best-fitting model with Ω_{m,0} = 0.302 followed by the Inverse Power-Law model of Quintessence {Ω_{m,0} = 0.265, α = 3}.

- We computed the growth structure function for ω CDM, Quintessence and Jordan Fierz Brans Dicke theories.
- **②** We solved the background and perturbation equations by assuming that initially theories behave as ΛCDM .
- A χ^2 analysis is implemented by using galaxy power spectra data Table 2.
- ${\small \textcircled{O}}$ We realized that $\Lambda {\rm CDM}$ is not the best-fitting model of $\omega {\rm CDM}$ theory.
- Results show that Λ CDM is the best-fitting model with $\Omega_{m,0} = 0.302$ followed by the Inverse Power-Law model of Quintessence { $\Omega_{m,0} = 0.265, \alpha = 3$ }.

Some parameters of the theories are not fully constrained. Possible ways of extending our results :

- To use other kind of observational data, such as supernovae datasets G. Barro Calvo and A. L. Maroto, Phys. Rev. D 74 (2006) 083519 [astro-ph/0604409] and to overlap their contourplots in order to limit the bound of the involved parameters.
- To study their power spectra. Quasi-static approximation must be dropped out, otherwise the transfer function and consequently the power spectrum would be flat.
- To probe new range of redshifts and to check whether $\Lambda {\rm CDM}$ keep being the best-fitting model.
- To analyze Jordan Fierz Brans Dicke models with arbitrary potentials.
- To sweep further values of β (Double Exponential Potential model of Quintessence) and to implement a marginalized χ^2 test.

Some parameters of the theories are not fully constrained. Possible ways of extending our results :

- To use other kind of observational data, such as supernovae datasets G. Barro Calvo and A. L. Maroto, Phys. Rev. D 74 (2006) 083519 [astro-ph/0604409] and to overlap their contourplots in order to limit the bound of the involved parameters.
- To study their power spectra. Quasi-static approximation must be dropped out, otherwise the transfer function and consequently the power spectrum would be flat.
- To probe new range of redshifts and to check whether ACDM keep being the best-fitting model.
- To analyze Jordan Fierz Brans Dicke models with arbitrary potentials.
- To sweep further values of β (Double Exponential Potential model of Quintessence) and to implement a marginalized χ^2 test.

- E - - E -

Some parameters of the theories are not fully constrained. Possible ways of extending our results :

- To use other kind of observational data, such as supernovae datasets G. Barro Calvo and A. L. Maroto, Phys. Rev. D 74 (2006) 083519 [astro-ph/0604409] and to overlap their contourplots in order to limit the bound of the involved parameters.
- To study their power spectra. Quasi-static approximation must be dropped out, otherwise the transfer function and consequently the power spectrum would be flat.
- To probe new range of redshifts and to check whether ΛCDM keep being the best-fitting model.
- To analyze Jordan Fierz Brans Dicke models with arbitrary potentials.
- To sweep further values of β (Double Exponential Potential model of Quintessence) and to implement a marginalized χ^2 test.

- E - - E -

Some parameters of the theories are not fully constrained. Possible ways of extending our results :

- To use other kind of observational data, such as supernovae datasets G. Barro Calvo and A. L. Maroto, Phys. Rev. D 74 (2006) 083519 [astro-ph/0604409] and to overlap their contourplots in order to limit the bound of the involved parameters.
- To study their power spectra. Quasi-static approximation must be dropped out, otherwise the transfer function and consequently the power spectrum would be flat.
- To probe new range of redshifts and to check whether $\Lambda {
 m CDM}$ keep being the best-fitting model.
- To analyze Jordan Fierz Brans Dicke models with arbitrary potentials.
- To sweep further values of β (Double Exponential Potential model of Quintessence) and to implement a marginalized χ^2 test.

A B K A B K

Some parameters of the theories are not fully constrained. Possible ways of extending our results :

- To use other kind of observational data, such as supernovae datasets G. Barro Calvo and A. L. Maroto, Phys. Rev. D 74 (2006) 083519 [astro-ph/0604409] and to overlap their contourplots in order to limit the bound of the involved parameters.
- To study their power spectra. Quasi-static approximation must be dropped out, otherwise the transfer function and consequently the power spectrum would be flat.
- To probe new range of redshifts and to check whether ΛCDM keep being the best-fitting model.
- To analyze Jordan Fierz Brans Dicke models with arbitrary potentials.
- To sweep further values of β (Double Exponential Potential model of Quintessence) and to implement a marginalized χ^2 test.

References

- S. J. Turnbull, M. J. Hudson, H. A. Feldman, M. Hicken, R. P. Kirshner and R. Watkins, Mon. Not. Roy. Astron. Soc. 420 (2012) 447 [arXiv :1111.0631 [astro-ph.CO]].
- [2] M. Davis, A. Nusser, K. Masters, C. Springob, J. P. Huchra and G. Lemson, arXiv :1011.3114 [astro-ph.CO].
- [3] F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, G. B. Poole, L. Campbell and Q. Parker *et al.*, Mon. Not. Roy. Astron. Soc. **423** (2012) 3430 [arXiv :1204.4725 [astro-ph.CO]].
- [4] W. J. Percival *et al.* [2dFGRS Collaboration], Mon. Not. Roy. Astron. Soc. 353 (2004) 1201 [astro-ph/0406513].
- [5] Y.-S. Song and W. J. Percival, JCAP 0910 (2009) 004 [arXiv :0807.0810 [astro-ph]].
- J. da Angela, T. Shanks, S. M. Croom, P. Weilbacher, R. J. Brunner, W. J. Couch, L. Miller and A. D. Myers *et al.*, Mon. Not. Roy. Astron. Soc. 383 (2008) 565 [astro-ph/0612401].
- [7] A. Cabre and E. Gaztanaga, Mon. Not. Roy. Astron. Soc. 393 (2009) 1183 [arXiv :0807.2460 [astro-ph]].
- [8] L. Samushia, W. J. Percival and A. Raccanelli, Mon. Not. Roy. Astron. Soc. 420 (2012) 2102 [arXiv :1102.1014 [astro-ph.CO]].
- [9] B. A. Reid, L. Samushia, M. White, W. J. Percival, M. Manera, N. Padmanabhan, A. J. Ross and A. G. Sanchez *et al.*, arXiv :1203.6641 [astro-ph.CO].

P3TMA