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The goal :

To find the model which best explains the current accelerating phase of the Universe by
using growth rate data.
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The goal :

To find the model which best explains the current accelerating phase of the Universe by

using growth rate data.

@ We study the growth structure in Dark Energy (DE) and Modified Gravity (\MG) theories :
Quintessence, wCDM and Jordan Fierz Brans Dicke (JFBD).

@ We use galaxy power spectra observational data

of our theories.

to constrain the free parameters

[ Survey [ Redshift, z | fog(2) [ Reference |
THF 0.02 0.40 + 0.07
DNM 0.02 0.31 + 0.05
6dFGS 0.07 0.42 4+ 0.06
2dFGRS 0.17 0.42 + 0.06
2SLAQ 0.55 0.45 + 0.05

0.34 0.53 + 0.07
SDSS LRG 0.25 0.35 £ 0.06
0.37 0.46 + 0.04
BOSS 0.57 0.43 4+ 0.07
0.20 0.40 + 0.13
WiggleZ 0.40 0.39 £ 0.08
0.60 0.40 £ 0.07
0.76 0.48 + 0.09
VVDS 0.77 0.49 + 0.18
VIPERS 0.80 0.47 + 0.08
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To find the model which best explains the current accelerating phase of the Universe by

using growth rate data.

@ We study the growth structure in Dark Energy (DE) and Modified Gravity (\MG) theories :
Quintessence, wCDM and Jordan Fierz Brans Dicke (JFBD).

@ We use galaxy power spectra observational data

of our theories.

to constrain the free parameters

[ Survey [ Redshift, z | fog(2) [ Reference |
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2dFGRS 0.17 0.42 + 0.06
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0.34 0.53 + 0.07
SDSS LRG 0.25 0.35 £ 0.06
0.37 0.46 + 0.04
BOSS 0.57 0.43 4+ 0.07
0.20 0.40 + 0.13
WiggleZ 0.40 0.39 £ 0.08
0.60 0.40 £ 0.07
0.76 0.48 + 0.09
VVDS 0.77 0.49 + 0.18
VIPERS 0.80 0.47 + 0.08

@ 2 analysis to evaluate the best-fitting model and compare the results with the
Cosmological Concordance Model, ACDM.
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Motivation

DE and MG theories appear as an alternative solution to some theoretical and phenomenological
issues in General Relativity (GR).
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@ preserve success of ACDM in previous Cosmological epochs,

@ allow the formation of structures of the Universe nowadays,

@ drive accelerating expansion of the Universe today.
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Motivation

DE and MG theories appear as an alternative solution to some theoretical and phenomenological
issues in General Relativity (GR).
These theories must

@ preserve success of ACDM in previous Cosmological epochs,

@ allow the formation of structures of the Universe nowadays,

@ drive accelerating expansion of the Universe today.

How to distinguish among DE and MG theories ?

@ Growth structure observations are sensitive to both background evolution and
cosmological linear matter density perturbations.

@ Several theories can present the same cosmological expansion history while they differ in
the evolution of perturbations.
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Cosmological perturbations in GR
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Cosmological perturbations in GR

@ The matter density perturbation equation. Density contrast § = %
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Cosmological perturbations in GR

@ The matter density perturbation equation. Density contrast § = %

@ RW metric in longitudinal gauge
ds? = a2(n){(1 + 2®)dn? — (1 — 2W)[dr? + r?(d6? + sin®0d¢?)]}, (1)

& and W Bardeen's potentials.
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@ We obtain the perturbed equations of motions up to linear order :

5Gl = —8rGSTH. )

© We assume :

@ Perfect fluid behavior.

@ Adiabatic perturbations (entropy is constant).

@ Quasi-static approximation (QSA). Time derivatives are small with respect to
spatial derivatives.
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Valid for sub-Hubble modes, k >> H.
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Cosmological perturbations in GR

@ The matter density perturbation equation. Density contrast § = %

@ RW metric in longitudinal gauge
ds? = a2(n){(1 + 2®)dn? — (1 — 2W)[dr? + r?(d6? + sin®0d¢?)]}, (1)

& and W Bardeen's potentials.
@ We obtain the perturbed equations of motions up to linear order :

5Gl = —8rGSTH. )

© We assume :

@ Perfect fluid behavior.

@ Adiabatic perturbations (entropy is constant).

@ Quasi-static approximation (QSA). Time derivatives are small with respect to
spatial derivatives.

@ Fourier space :

§ +2HS — 47 Gpm(t)s = 0. (3)
Valid for sub-Hubble modes, k >> H.
@ The growth structure function is defined as f(z)oo,8d(z), being f(z) = Zi‘;‘; the growth

rate and 0g,3 = 0.8.
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Effective Field Theory formalism
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EFT FORMALISM

@ The action of many theories can be written (in unitary gauge) in function of the so-called
structural functions : M(t), A(t), C(t), p3(t), u3(t) and es(t).

2
Theory p= 26000 | ) | c) | pd0) | ps(t) | ealt)
ACDM 0 const. 0 0 0 0
wCDM 0 v 0 0 0 0
Quintessence 0 v v 0 0 0
JFBD v v v 0 0 0
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EFT FORMALISM

@ The action of many theories can be written (in unitary gauge) in function of the so-called

structural functions : M(t), A(t), C(t), p3(t), u3(t) and es(t).

2
Theory p= 26000 | ) | c) | pd0) | ps(t) | ealt)
ACDM 0 const. 0 0 0 0
wCDM 0 v 0 0 0 0
Quintessence 0 v v 0 0 0
JFBD v v v 0 0 0
@ Density perturbation equation can be derived (analogously to GR) :
. . 3
6+ 2Hs — EGe”Qm(t)é =0,
being Qm(t) the matter content and
1 1 2C + fiz — 2Heq + 2HE4 + 2(u + €4)° + Yir(t, k)

Gefr =

G 8rM2(1 + ¢4 5 : z (u+eg)(n—p3) _ (n—n3)?
( ) 2C + fig — 2Hes + 2HE4 + 2 e ~ ey YR(EK)

where i3, €& and Y)g(t, k) are combinations of the structural functions.
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EFT FORMALISM

@ The action of many theories can be written (in unitary gauge) in function of the so-called

structural functions : M(t), A(t), C(t), p3(t), u3(t) and es(t).

2
Theory p= 26000 | ) | c) | pd0) | ps(t) | ealt)
ACDM 0 const. 0 0 0 0
wCDM 0 v 0 0 0 0
Quintessence 0 v v 0 0 0
JFBD v v v 0 0 0
@ Density perturbation equation can be derived (analogously to GR) :
. . 3
6+ 2Hs — EGefom(t)(; =0,
being Qm(t) the matter content and
1 1 2C + fiz — 2Heq + 2HE4 + 2(u + €4)° + Yir(t, k)

Gefr =

G 8rM2(1 + ¢4 5 : z (u+eg)(n—p3) _ (n—n3)?
( ) 2C + fig — 2Hes + 2HE4 + 2 e ~ ey YR(EK)

where i3, €& and Y)g(t, k) are combinations of the structural functions.
@ Stability conditions :

3
A= (C+ 2;4%)(1 +e1) + Z(M — p3) > 0, Ghost free v/

b= p3

B = (C+ fi3/2 — Heq + HEg)(1 + e4) — (b — p3) <m
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Strategy

4D spatially flat, homogeneous and isotropic Universe in expansion described by the Robertson
Walker (RW) metric in comoving coordinates

ds? = dt? — 2%(t)[dr? + r?(d6? + sin®0d¢?)]. (8)
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@ Theories written within the Effective Field Theory (EFT) formalism

@ it allows to gather all of them in a very compact manner,
@ it provides a neat separation between background and perturbation sectors
@ and it permits to have under control any kind of instability.

P3TMA Master Il 10 / 30



Strategy

4D spatially flat, homogeneous and isotropic Universe in expansion described by the Robertson
Walker (RW) metric in comoving coordinates

ds? = dt? — 2%(t)[dr? + r?(d6? + sin®0d¢?)]. (8)

@ Theories written within the Effective Field Theory (EFT) formalism

@ it allows to gather all of them in a very compact manner,
@ it provides a neat separation between background and perturbation sectors
@ and it permits to have under control any kind of instability.

@ The background equations are solved.

P3TMA Master 11 10 / 30



Strategy

4D spatially flat, homogeneous and isotropic Universe in expansion described by the Robertson
Walker (RW) metric in comoving coordinates

ds? = dt? — 2%(t)[dr? + r?(d6? + sin®0d¢?)]. (8)

@ Theories written within the Effective Field Theory (EFT) formalism

@ it allows to gather all of them in a very compact manner,
@ it provides a neat separation between background and perturbation sectors
@ and it permits to have under control any kind of instability.

@ The background equations are solved.

© We study the growth structure function assuming that the theories behave as ACDM at
the present time.

P3TMA Master 11 10 / 30



Strategy

4D spatially flat, homogeneous and isotropic Universe in expansion described by the Robertson
Walker (RW) metric in comoving coordinates

ds? = dt? — 2%(t)[dr? + r?(d6? + sin®0d¢?)]. (8)

@ Theories written within the Effective Field Theory (EFT) formalism

@ it allows to gather all of them in a very compact manner,
@ it provides a neat separation between background and perturbation sectors
@ and it permits to have under control any kind of instability.

@ The background equations are solved.

© We study the growth structure function assuming that the theories behave as ACDM at
the present time.

@ ° analysis constrains the free parameters of our theories.

P3TMA Master Il 10 / 30



Strategy

4D spatially flat, homogeneous and isotropic Universe in expansion described by the Robertson
Walker (RW) metric in comoving coordinates

ds? = dt? — 2%(t)[dr? + r?(d6? + sin®0d¢?)]. (8)

@ Theories written within the Effective Field Theory (EFT) formalism

@ it allows to gather all of them in a very compact manner,
@ it provides a neat separation between background and perturbation sectors
@ and it permits to have under control any kind of instability.

@ The background equations are solved.

© We study the growth structure function assuming that the theories behave as ACDM at
the present time.

@ ° analysis constrains the free parameters of our theories.

© In order to compare theories with different number of free parameters, x, the reduced
is computed

2 2
Xred = Xmin/l’ (9)

being v = N — k — 1 the number of degrees of freedom of the theory and N = # data
points.
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Theories under analysis )
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ACDM ]
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ACDM

2
@ Action : Spnepm = [ d*x \g\% [R —2A].
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ACDM

2
Mp,

@ Action : Sacpy = fd4X gl 2

[R — 2A].

@ Exact solution of the Friedmann equation for flat Universe with matter and cosmological

constant (c.c) :
Q 3,/Q
a(t) = (QL’O> |:sinh <2A’0H0t>

2/3

(10)
A0

being Qm,0 and Qp o the matter and the c.c content at the present time, respectively, and
Hp is the Hubble parameter today.
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ACDM

2
@ Action : Spnepm = [ d*x \g\% [R —2A].

@ Exact solution of the Friedmann equation for flat Universe with matter and cosmological

constant (c.c) :
Q 3,/Q
a(t) = (QL’O> |:sinh <2A’0H0t>

A0

2/3
(10)

being Qm,0 and Qp o the matter and the c.c content at the present time, respectively, and
Hp is the Hubble parameter today.

@ Perturbation equation. B )
0+ 2H0 — 4nGpmd =0, (11)

Initial conditions (I.C.) are set in the past (z = 1000) when §(t) ~ a(t).
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ACDM

2
@ Action : Spnepm = [ d*x \g\% [R —2A].

@ Exact solution of the Friedmann equation for flat Universe with matter and cosmological

constant (c.c) :
Q 3,/Q
a(t) = (QL’O> |:sinh <2A’0H0t>

A0

2/3
(10)

being Qm,0 and Qp o the matter and the c.c content at the present time, respectively, and
Hp is the Hubble parameter today.

@ Perturbation equation. B )
0+ 2H0 — 4nGpmd =0, (11)

Initial conditions (I.C.) are set in the past (z = 1000) when §(t) ~ a(t).
@ Growth structure function is computed.

@ 7 analysis : x2,; = 11.689 (x2,; = 0.899) at Qo = 0.302 and Q) o = 0.698.
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wCDM |
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wCDM

@ Characterized by a constant equation of state parameter, w = const. ACDM belongs to
this kind of theories.
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being prime the derivative w.r.t. the dimensionless time, 7 = Hyt.
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wCDM

@ Characterized by a constant equation of state parameter, w = const. ACDM belongs to
this kind of theories.

@ The Friedmann equation reads as

/ 2
(20Y" 1+ e 40 o

being prime the derivative w.r.t. the dimensionless time, 7 = Hyt.

@ Matter density perturbation equation, expression (4) :
H 3
8" +2—6 — ZGefQUm(7)5 = 0, (13)
Ho 2

being Gerr = 1, particularizing (5). The I.C. are imposed today §(Ttoday) = IncoM (Troday)
and 6/(Ttaday) = 6;\CDM(Ttoday)-
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wCDM

@ Characterized by a constant equation of state parameter, w = const. ACDM belongs to
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@ The Friedmann equation reads as

/ 2
(20Y" 1+ e 40 o

being prime the derivative w.r.t. the dimensionless time, 7 = Hyt.

@ Matter density perturbation equation, expression (4) :
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8" +2—6 — ZGefQUm(7)5 = 0, (13)
Ho 2

being Gerr = 1, particularizing (5). The I.C. are imposed today §(Ttoday) = IncoM (Troday)
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@ Stability conditions (6) and (7) are satisfied.

@ The growth structure function is computed and the > analysis implemented.
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wCDM results.

Parameters {2, 0, w}.

-061

-081

-10r

3 -12¢ B 23.01€
17.21€
_14r+
13.51€¢

-161

-181

-2.0¢c . . . ! k|
0.20 0.25 0.30 0.35

Qmo

Result of the x? test for wCDM models. Confidence levels 68%, 95% and 99% are plotted.

@ The minimum X2, = 11.216 (x2,; = 0.935) is found at Q0 = 0.27, w = —0.59.
@ ACDM, w = —1, is not the best-fitting model of wCDM theory.
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Quintessence J
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Quintessence

@ Action : Sy = [ d*/g] | "BR + 1(8,6)(6"¢) — V(9).
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Quintessence

@ Action : Sy = [ d*x+/]g] [MT'%’R—&- %(@m&)(@”qﬁ) - V(¢)|.

@ Background and field equations :

/ 2 /
(Z ((:))) ‘%2 +V(B) + Qmoa(7), (14)
3 +32Z ¢> + 6‘(;((;’) 0 (15)

where prime is the dimensionless time derivative, ¢ = v87G¢ and V() is the
dimensionless potential.

The I.C. are imposed in the past, a(0) = 1073, ¢(0) = 0.5 and its time derivative
$'(0)=0
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Quintessence

@ Action : Sy = [ d*x+/]g] [MT'%’R—&- %(@m&)(@”qﬁ) - V(¢)|.

@ Background and field equations :

/ 2 /
(22) = 2+ 946 + 2moa(0), (14)
3" +3Z ¢> + 6‘(;((;’) 0 (15)

where prime is the dimensionless time derivative, ¢ = v87G¢ and V() is the
dimensionless potential.

The I.C. are imposed in the past, a(0) = 1073, ¢(0) = 0.5 and its time derivative
$'(0)=0

@ Matter density perturbation (4). Geg = 1.
I.C. 6(7—today) = 6/\CDM(7_today) and 6,(7_today) = 6//\CD/\/](Ttoday)-
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Quintessence

@ Action : Sy = [ d*x+/]g] [MT'%’R—&- %(@m&)(@”qﬁ) - V(¢)|.

@ Background and field equations :

/ 2 /
("’a ((:))) ‘%2 +V(B) + Qmoa(7), (14)
3 +32Z ¢> + 6‘(;((;’) 0 (15)

where prime is the dimensionless time derivative, ¢ = v87G¢ and V() is the
dimensionless potential.

The I.C. are imposed in the past, a(0) = 1073, ¢(0) = 0.5 and its time derivative
$'(0)=0

@ Matter density perturbation (4). Geg = 1.

I.C. 6(7'today) = 6/\CDM(7'today) and 6,(7_today) = 5//\CD/\/](Ttoday)'
@ Stability conditions (6) and (7) are satisfied.
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Quintessence

@ Action : Sy = [ d*x+/]g] [MT’%’R—&- 1(0ud)(049) — V(9)|.

@ Background and field equations :

/ 2 /
(22) = 2+ 946 + 2moa(0), (14)
3" +3Z ¢> + 6‘(;((;’) 0 (15)

where prime is the dimensionless time derivative, ¢ = v87G¢ and V() is the
dimensionless potential.

The I.C. are imposed in the past, a(0) = 1073, ¢(0) = 0.5 and its time derivative
$'(0)=0

@ Matter density perturbation (4). Geg = 1.
I.C. 6(7—today) = 6/\CDM(7_today) and 6,(Ttoday) = 5//\CD/\/](Ttoday)'
@ Stability conditions (6) and (7) are satisfied.
@ Models : Inverse Power-Law (IPL) and Double Exponential Potential (2EP).
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Quintessence

Amm:%:fwx\QP@R+gm@w%n—w@.

Background and field equations :

a(r)\* _ 92
(3(7)) = 5 + V(@) + Qmoa™ (7),

V()
¢
where prime is the dimensionless time derivative, ¢ = v87G¢ and V() is the

dimensionless potential.

The I.C. are imposed in the past, a(0) = 1073, ¢(0) = 0.5 and its time derivative
¢'(0) =0

¢//+3 (z) + 0

Matter density perturbation (4). Gegr = 1.

I.C. 6(7—today) = 6/\CDM(7_today) and 6,(Ttoday) = 5//\CD/\/](Ttoday)'

Stability conditions (6) and (7) are satisfied.

Models : Inverse Power-Law (IPL) and Double Exponential Potential (2EP).

The growth structure function is computed and the x? analysis implemented.
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IPL result.

Potential : V/(¢) = A/¢™, parameters {0, 0,0}, A= A(Qmo, ).

23.013
17.213
13513

Result of the x? test for IPL models. Confidence levels 68%, 95% and 99% are plotted.

@ The minimum 2, = 11.213 (Xzed = 0.934) is found at Q,, 0 = 0.265, @« = 3 and
A = 8.032.

@ « cannot take negative values since the potential would stop being an inverse power-law.
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2EP result.

Potential : \7(¢N)) = A(e"“z~S + 65‘5), parameters {<),, o, v, 5}.

@ 0 < a<0.8since wy < —0.8 and 3 > 5.5 due to Nucleosynthesis constraints,

@ 3=20

A= A(Qmo, ).
0.8 ]
0.7 1
0.6 ]
0.5 29.129
04 22789
18.499
0.3 1
0.2 1
0.1 i
0.45

Result of the x? test for 2EP models. C.L. 68%, 95% and 99%.

@ 2. =11.216 (x2, = 1.361) is found at Q0 = 0.359, 3 =20, o = 0.6 and A = 0.797.
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Jordan Fierz Brans Dicke J
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JFBD

@ The action in the Jordan Frame reads as

Sirep = [ d*x ﬁ (<¢>R+“’BD g 8 ddu — V(¢))

— 2 . . .
being wgp = —% the characteristic parameter of JFBD theories.
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JFBD

@ The action in the Jordan Frame reads as

Sirsp = | d*x 1V6'gG (¢>R + B g 9,60, — V(¢))
2
being wgp = —% the characteristic parameter of JFBD theories.

@ Background evolution. The contribution of ¢ to H(t) is quite negligible,

¢"?/H ~ 10711 — 10717, Then, the solution is a(t) ~ arcpm(t), see (10).
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JFBD

@ The action in the Jordan Frame reads as

d*x \/|g

SirBD = 160G

(<¢>R+“’BD 8" 0. p0ud — V(¢))

_3-1/a?
2

being wgp = the characteristic parameter of JFBD theories.

@ Background evolution. The contribution of ¢ to H(t) is quite negligible,
¢"?/H ~ 10711 — 10717, Then, the solution is a(t) ~ arcpm(t), see (10).

@ Density perturbation equation (4). Geg (5) is function of time and Fourier modes, k,

1 1 2C+2u?+ Yig(t, k)

Getr = —
TG 8rM2 2C + 342 + Yig(t, k)

(16)

but we assume k > 100hMpc~!. Hence the dependence of G on the k modes is
negligible.
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being wgp = —% the characteristic parameter of JFBD theories.

@ Background evolution. The contribution of ¢ to H(t) is quite negligible,
¢"?/H ~ 10711 — 10717, Then, the solution is a(t) ~ arcpm(t), see (10).

@ Density perturbation equation (4). Geg (5) is function of time and Fourier modes, k,

1 1 2C+2u?+ Yig(t, k)

Getr = —
TG 8rM2 2C + 342 + Yig(t, k)

(16)

but we assume k > 100hMpc~!. Hence the dependence of G on the k modes is
negligible.

@ Stable theory, conditions (6) and (7) are satisfied.

@ The growth structure function is computed and the x” analysis implemented.
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JFBD results.

_ 2
Potential : V(¢) = 0, parameters {Q, 0. o}, wgp = —%.
0.0034( 1
0.0033f 1
. 0.0032f | o188
17.688
0.0031- 13.988
0.0030( 1
0.0029t . . n n ; ’ LA
026 028 030 032 034 03 038
Qmo
Result of the x? test for JFBD models. C.L. 68%, 95% and 99%.
° limits o < 3.45-1073.

@ X2, =11.6884 (x%, = 0.974) is found at Q0 = 0.31, a = 3.00- 102 and
wpp = 5.5-10%
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Results

Background evolution of the best-fitting models.

Reduced Hubble rate, H(z)/H,

2.0

—
oo

TR
(=)}

._.
n

—
[\

—_
(=]

- —ACDM 4
—wCDM |
—IPL
—2EP

- -JFBD

Theory | gq(z=0)
ACDM | —0.547

IPL —0.121
[ 2EP -1. 1
wCDM | —0.144

JFBD | —0.535

0.0 0.2 0.4 0.6 0.8 1.0
Redshift, z

Reduced Hubble rate evolution. All the models present a similar tendency.

@ The reduced Hubble parameter today is equal to one, 1 = Q,, o0 + O .

@ Every model causes acceleration, q(z) = fﬁ < 0, but ACDM is the one closer to the
0o

observed value q,,:(0) = —0.55.
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Results

Growth structure of the best-fitting models.

Theory XEed Qm.o Second parameter Third parameter
ACDM | 0.899 | 0.30274%8 | w= -1 -
0.2651%9% | =370 A=8.032H10
2EP 1361 | 0.3597%%0 | o =0.6'%%,8=20 A =0.797T4%0
wCDM | 0.935 | 0.27074%% | w = -0.507%%) -
JFBD 0.974 | 0.31074%P0 | o =(3.00 1073 TGWE | wgp = (55- 104)t61~_°3'_11‘:;

The table presents every model, their reduced X2 value and the best range of parameters (C.L. 68%).

4] X%ed is worse for models with larger number of free parameters.
@ The best-fitting model is ACDM (lowest y?_, = 0.899) followed by
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Results
Growth structure of the best-fitting models.

06] ]
- — ACDM
~ 05, 4
E 1 T l I — «CDM
b 4
S — 1] | «f\ IPL
= 04} ]
— 2EP
T— | D
03l ]
0.0 02 0.4 06 08 10

Redshift, z

Growth structure function and datapoints

@ All the models show the same value as ACDM at the present time, as we imposed by
assumption, but they deviate in the past.

@ JFBD curve very close to ACDM but it is not the second best-fitting model.

@ 2EP : the most deviated model and the worst fitting.
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Conclusions

@ We computed the growth structure function for wCDM,
Quintessence and Jordan Fierz Brans Dicke theories.
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Conclusions

@ We computed the growth structure function for wCDM,
Quintessence and Jordan Fierz Brans Dicke theories.

@ We solved the background and perturbation equations by
assuming that initially theories behave as ACDM.

© A \“ analysis is implemented by using galaxy power spectra data

@ We realized that ACDM is not the best-fitting model of wCDM
theory.

@ Results show that ACDM is the best-fitting model with
Q0 = 0.302 followed by the Inverse Power-Law model of
Quintessence {Q,,0 = 0.265, o = 3}.
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Prospects

Some parameters of the theories are not fully constrained. Possible
ways of extending our results :
@ To use other kind of observational data, such as supernovae datasets

and to overlap their contourplots in
order to limit the bound of the involved parameters.

P3TMA Master I 29 / 30



Prospects

Some parameters of the theories are not fully constrained. Possible
ways of extending our results :

@ To use other kind of observational data, such as supernovae datasets
and to overlap their contourplots in

order to limit the bound of the involved parameters.

@ To study their power spectra. Quasi-static approximation must be dropped out, otherwise
the transfer function and consequently the power spectrum would be flat.

P3TMA Master I 29 / 30



Prospects

Some parameters of the theories are not fully constrained. Possible
ways of extending our results :
@ To use other kind of observational data, such as supernovae datasets
and to overlap their contourplots in

order to limit the bound of the involved parameters.

@ To study their power spectra. Quasi-static approximation must be dropped out, otherwise
the transfer function and consequently the power spectrum would be flat.

@ To probe new range of redshifts and to check whether ACDM keep being the best-fitting
model.

P3TMA Master I 29 / 30



Prospects

Some parameters of the theories are not fully constrained. Possible
ways of extending our results :
@ To use other kind of observational data, such as supernovae datasets
and to overlap their contourplots in

order to limit the bound of the involved parameters.

@ To study their power spectra. Quasi-static approximation must be dropped out, otherwise
the transfer function and consequently the power spectrum would be flat.

@ To probe new range of redshifts and to check whether ACDM keep being the best-fitting
model.

@ To analyze Jordan Fierz Brans Dicke models with arbitrary potentials.

P3TMA Master I 29 / 30



Prospects

Some parameters of the theories are not fully constrained. Possible
ways of extending our results :

@ To use other kind of observational data, such as supernovae datasets
and to overlap their contourplots in

order to limit the bound of the involved parameters.

@ To study their power spectra. Quasi-static approximation must be dropped out, otherwise
the transfer function and consequently the power spectrum would be flat.

@ To probe new range of redshifts and to check whether ACDM keep being the best-fitting
model.

@ To analyze Jordan Fierz Brans Dicke models with arbitrary potentials.

@ To sweep further values of 3 (Double Exponential Potential model of Quintessence) and
to implement a marginalized x? test. W
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