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The goal :
To find the model which best explains the current accelerating phase of the Universe by
using growth rate data.

1 We study the growth structure in Dark Energy (DE) and Modified Gravity (MG) theories :
Quintessence, ωCDM and Jordan Fierz Brans Dicke (JFBD).

2 We use galaxy power spectra observational data Table 2 to constrain the free parameters
of our theories.

Survey Redshift, z f σ8(z) Reference

THF 0.02 0.40± 0.07 [1]
DNM 0.02 0.31± 0.05 [2]
6dFGS 0.07 0.42± 0.06 [3]
2dFGRS 0.17 0.42± 0.06 [4, 5]
2SLAQ 0.55 0.45± 0.05 [6]

SDSS LRG
0.34 0.53± 0.07

[7, 8]0.25 0.35± 0.06
0.37 0.46± 0.04

BOSS 0.57 0.43± 0.07 [9]

WiggleZ
0.20 0.40± 0.13

[10]0.40 0.39± 0.08
0.60 0.40± 0.07
0.76 0.48± 0.09

VVDS 0.77 0.49± 0.18 [5, 11]
VIPERS 0.80 0.47± 0.08 [12]

3 χ2 analysis to evaluate the best-fitting model and compare the results with the
Cosmological Concordance Model, ΛCDM.
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Motivation

DE and MG theories appear as an alternative solution to some theoretical and phenomenological
issues in General Relativity (GR).

These theories must

preserve success of ΛCDM in previous Cosmological epochs,

allow the formation of structures of the Universe nowadays,

drive accelerating expansion of the Universe today.

How to distinguish among DE and MG theories ?

Growth structure observations are sensitive to both background evolution and
cosmological linear matter density perturbations.

Several theories can present the same cosmological expansion history while they differ in
the evolution of perturbations.
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Cosmological perturbations in GR
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Cosmological perturbations in GR
V. Mukhanov, Cambridge University Press.18 (2005).

The matter density perturbation equation. Density contrast δ = ρ−ρ0
ρ0

.

1 RW metric in longitudinal gauge

ds2 = a2(η){(1 + 2Φ)dη2 − (1− 2Ψ)[dr2 + r2(dθ2 + sin2θdφ2)]}, (1)

Φ and Ψ Bardeen’s potentials.
2 We obtain the perturbed equations of motions up to linear order :

δGµν = −8πGδTµ
ν . (2)

3 We assume :

Perfect fluid behavior.
Adiabatic perturbations (entropy is constant).
Quasi-static approximation (QSA). Time derivatives are small with respect to
spatial derivatives.

4 Fourier space :
δ̈ + 2H δ̇ − 4πGρm(t)δ = 0. (3)

Valid for sub-Hubble modes, k >> H.

The growth structure function is defined as f (z)σ0,8δ(z), being f (z) = dlnδ
dlna

the growth
rate and σ0,8 ≡ 0.8.
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Effective Field Theory formalism
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EFT FORMALISM
G. Gubitosi, F. Piazza and F. Vernizzi, JCAP 1302 (2013) 032 [arXiv :1210.0201 [hep-th]].

The action of many theories can be written (in unitary gauge) in function of the so-called
structural functions : M(t), λ(t), C(t), µ2

2(t), µ3(t) and ε4(t).

Theory µ =
dlog(M2(t))

dt
λ(t) C(t) µ2

2(t) µ3(t) ε4(t)

ΛCDM 0 const. 0 0 0 0
ωCDM 0 X 0 0 0 0
Quintessence 0 X X 0 0 0
JFBD X X X 0 0 0

Density perturbation equation can be derived (analogously to GR) :

δ̈ + 2H δ̇ −
3

2
Geff Ωm(t)δ = 0, (4)

being Ωm(t) the matter content and

Geff =
1

G

1

8πM2(1 + ε4)

2C + µ̃3 − 2Ḣε4 + 2H ε̃4 + 2(µ + ε̃4)2 + YIR (t, k)

2C + µ̃3 − 2Ḣε4 + 2H ε̃4 + 2
(µ+ε̃4)(µ−µ3)

1+ε4
− (µ−µ3)2

2(1+ε4)2 + YIR (t, k)

(5)

where µ̃3, ε̃4 and YIR (t, k) are combinations of the structural functions.
Stability conditions :

A = (C + 2µ2
2)(1 + ε4) +

3

4
(µ− µ3) ≥ 0, Ghost free X (6)

B = (C + µ̃3/2− Ḣε4 + H ε̃4)(1 + ε4)− (µ− µ3)

(
µ− µ3

4(1 + ε4)
− µ− ε̃4

)
≥ 0. Gradient stability X (7)
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Strategy

4D spatially flat, homogeneous and isotropic Universe in expansion described by the Robertson
Walker (RW) metric in comoving coordinates

ds2 = dt2 − a2(t)[dr2 + r2(dθ2 + sin2θdφ2)]. (8)

1 Theories written within the Effective Field Theory (EFT) formalism

it allows to gather all of them in a very compact manner,
it provides a neat separation between background and perturbation sectors
and it permits to have under control any kind of instability.

2 The background equations are solved.

3 We study the growth structure function assuming that the theories behave as ΛCDM at
the present time.

4 χ2 analysis constrains the free parameters of our theories.

5 In order to compare theories with different number of free parameters, κ, the reduced χ2

is computed
χ2

red = χ2
min/ν (9)

being ν = N − κ− 1 the number of degrees of freedom of the theory and N = # data
points.
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ΛCDM
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ΛCDM

Action : SΛCDM =
∫

d4x
√
|g |M

2
Pl

2
[R − 2Λ].

Exact solution of the Friedmann equation for flat Universe with matter and cosmological
constant (c.c) :

a(t) =

(
Ωm,0

ΩΛ,0

)[
sinh

(
3
√

ΩΛ,0

2
H0t

)]2/3

(10)

being Ωm,0 and ΩΛ,0 the matter and the c.c content at the present time, respectively, and
H0 is the Hubble parameter today.

Perturbation equation.
δ̈ + 2H δ̇ − 4πGρmδ = 0, (11)

Initial conditions (I.C.) are set in the past (z = 1000) when δ(t) ' a(t).

Growth structure function is computed.

χ2 analysis : χ2
min = 11.689 (χ2

red = 0.899) at Ωm,0 = 0.302 and ΩΛ,0 = 0.698.
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ωCDM
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ωCDM

Characterized by a constant equation of state parameter, ω ≡ const. ΛCDM belongs to
this kind of theories.

The Friedmann equation reads as

(
a′(τ)

a(τ)

)2

= Ωm,0a(τ)−3 + ΩΛ,0a(τ)−3(1+ω), (12)

being prime the derivative w.r.t. the dimensionless time, τ = H0t.

Matter density perturbation equation, expression (4) :

δ′′ + 2
H

H0
δ′ −

3

2
Geff Ωm(τ)δ = 0, (13)

being Geff = 1, particularizing (5). The I.C. are imposed today δ(τtoday ) = δΛCDM (τtoday )
and δ′(τtoday ) = δ′ΛCDM (τtoday ).

Stability conditions (6) and (7) are satisfied.

The growth structure function is computed and the χ2 analysis implemented.
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ωCDM results.
Parameters {Ωm,0, ω}.
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Result of the χ2 test for ωCDM models. Confidence levels 68%, 95% and 99% are plotted.

The minimum χ2
min = 11.216 (χ2

red = 0.935) is found at Ωm,0 = 0.27, ω = −0.59.
ΛCDM, ω = −1, is not the best-fitting model of ωCDM theory.

P3TMA Master II 16 / 30



Quintessence
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Quintessence
S. Tsujikawa, Class. Quant. Grav. 30 (2013) 214003 [arXiv :1304.1961 [gr-qc]].

Action : Sφ =
∫

d4x
√
|g |
[

M2
Pl

2
R + 1

2
(∂µφ)(∂µφ)− V (φ)

]
.

Background and field equations :

(
a′(τ)

a(τ)

)2

=
φ̃′2

6
+ Ṽ (φ̃) + Ωm,0a−3(τ), (14)

φ̃′′ + 3
a′

a
φ̃′ +

∂Ṽ (φ̃)

∂φ̃
= 0 (15)

where prime is the dimensionless time derivative, φ̃ =
√

8πGφ and Ṽ (φ̃) is the
dimensionless potential.
The I.C. are imposed in the past, a(0) = 10−3, φ(0) = 0.5 and its time derivative
φ′(0) = 0 (G. Barro Calvo and A. L. Maroto, Phys. Rev. D 74 (2006) 083519
[astro-ph/0604409]).

Matter density perturbation (4). Geff = 1.
I.C. δ(τtoday ) = δΛCDM (τtoday ) and δ′(τtoday ) = δ′ΛCDM (τtoday ).

Stability conditions (6) and (7) are satisfied.

Models : Inverse Power-Law (IPL) and Double Exponential Potential (2EP).

The growth structure function is computed and the χ2 analysis implemented.
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IPL result.
Potential : Ṽ (φ̃) = A/φ̃α, parameters {Ωm,0, α}. A = A(Ωm,0, α).
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Result of the χ2 test for IPL models. Confidence levels 68%, 95% and 99% are plotted.

The minimum χ2
min = 11.213 (χ2

red = 0.934) is found at Ωm,0 = 0.265, α = 3 and
A = 8.032.

α cannot take negative values since the potential would stop being an inverse power-law.
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2EP result.
Potential : Ṽ (φ̃) = A(eαφ̃ + eβφ̃), parameters {Ωm,0, α, β}. A = A(Ωm,0, α).
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Result of the χ2 test for 2EP models. C.L. 68%, 95% and 99%.

0 < α < 0.8 since ωφ < −0.8 and β > 5.5 due to Nucleosynthesis constraints, T. Barreiro,

E. J. Copeland and N. J. Nunes, Phys. Rev. D 61 (2000) 127301 [astro-ph/9910214].
β = 20 G. Barro Calvo and A. L. Maroto, Phys. Rev. D 74 (2006) 083519 [astro-ph/0604409].
χ2

min = 11.216 (χ2
red = 1.361) is found at Ωm,0 = 0.359, β = 20, α = 0.6 and A = 0.797.
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Jordan Fierz Brans Dicke
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JFBD
B. Boisseau, G. Esposito-Farese, D. Polarski and A. A. Starobinsky, Phys. Rev. Lett. 85 (2000) 2236 [gr-qc/0001066].

The action in the Jordan Frame reads as

SJFBD =

∫
d4x

√
|g |

16πG

(
φR +

ωBD

φ
gµν∂µφ∂νφ− V (φ)

)
,

being ωBD = − 3−1/α2

2
the characteristic parameter of JFBD theories.

Background evolution. The contribution of φ to H(t) is quite negligible,
φ′2/H ∼ 10−11 − 10−17. Then, the solution is a(t) ' aΛCDM(t), see (10).

Density perturbation equation (4). Geff (5) is function of time and Fourier modes, k,

Geff =
1

G

1

8πM2

2C + 2µ2 + YIR (t, k)

2C + 3
2
µ2 + YIR (t, k)

(16)

but we assume k & 100hMpc−1. Hence the dependence of Geff on the k modes is
negligible.

Stable theory, conditions (6) and (7) are satisfied.

The growth structure function is computed and the χ2 analysis implemented.
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JFBD results.
Potential : V (φ) = 0, parameters {Ωm,0, α}. ωBD = − 3−1/α2

2
.
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Result of the χ2 test for JFBD models. C.L. 68%, 95% and 99%.

Cassini Mission, B. Bertotti, L. Iess and P. Tortora, Nature 425,374-376 limits α < 3.45 · 10−3.
χ2

min = 11.6884 (χ2
red = 0.974) is found at Ωm,0 = 0.31, α = 3.00 · 10−3 and

ωBD = 5.5 · 104.
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Results and Conclusions
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Results
Background evolution of the best-fitting models.

Reduced Hubble rate evolution. All the models present a similar tendency.

The reduced Hubble parameter today is equal to one, 1 = Ωm,0 + Ωφ,0.

Every model causes acceleration, q(z0) = − ä0

a0H2
0
< 0, but ΛCDM is the one closer to the

observed value qobs (0) = −0.55.

P3TMA Master II 25 / 30



Results
Growth structure of the best-fitting models.

Theory χ2
red Ωm,0 Second parameter Third parameter

ΛCDM 0.899 0.302+0.068
−0.012 ω = −1 −

IPL 0.934 0.265+0.075
−0.065 α = 3+7

−3 A = 8.032+108

−7.257

2EP 1.361 0.359+0.010
−0.049 α = 0.6+0.2

−0.5, β = 20 A = 0.797+0.010
−0.096

ωCDM 0.935 0.270+0.070
−0.070 ω = −0.59+0.09

−0.91 −

JFBD 0.974 0.310+0.030
−0.030 α = (3.00 · 10−3)+0.00345

−0.00010 ωBD = (5.5 · 104)+6.0·104

−1.3·104

The table presents every model, their reduced χ2 value and the best range of parameters (C.L. 68%).

χ2
red is worse for models with larger number of free parameters.

The best-fitting model is ΛCDM (lowest χ2
red = 0.899) followed by IPL.
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Growth structure function and datapoints Table 2.

All the models show the same value as ΛCDM at the present time, as we imposed by
assumption, but they deviate in the past.

JFBD curve very close to ΛCDM but it is not the second best-fitting model.

2EP : the most deviated model and the worst fitting.
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Conclusions

1 We computed the growth structure function for ωCDM,
Quintessence and Jordan Fierz Brans Dicke theories.

2 We solved the background and perturbation equations by
assuming that initially theories behave as ΛCDM.

3 A χ2 analysis is implemented by using galaxy power spectra data
Table 2.

4 We realized that ΛCDM is not the best-fitting model of ωCDM
theory.

5 Results show that ΛCDM is the best-fitting model with
Ωm,0 = 0.302 followed by the Inverse Power-Law model of
Quintessence {Ωm,0 = 0.265, α = 3}.
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Prospects

Some parameters of the theories are not fully constrained. Possible
ways of extending our results :

To use other kind of observational data, such as supernovae datasets G. Barro Calvo and

A. L. Maroto, Phys. Rev. D 74 (2006) 083519 [astro-ph/0604409] and to overlap their contourplots in
order to limit the bound of the involved parameters.

To study their power spectra. Quasi-static approximation must be dropped out, otherwise
the transfer function and consequently the power spectrum would be flat.

To probe new range of redshifts and to check whether ΛCDM keep being the best-fitting
model.

To analyze Jordan Fierz Brans Dicke models with arbitrary potentials.

To sweep further values of β (Double Exponential Potential model of Quintessence) and
to implement a marginalized χ2 test. �
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