The Effective Field Theory of Large-Scale Structure

Themed Discussion (August 28, 17:00 UTC) Hosted by Mikhail Ivanov, Lucia F. de la Bella & Oliver Philcox

Cosmology from Home 2020

Standard Perturbation Theory

• Treat matter as a **perfect fluid** obeying the fluid equations

$\dot{\delta} + abla \cdot \left[(1+\delta) oldsymbol{v} ight] = 0,$	Continuity Equation
$\dot{\boldsymbol{v}} + (\boldsymbol{v} \cdot \nabla) \boldsymbol{v} = -\mathcal{H} \boldsymbol{v} - \nabla \phi,$	Euler Equation
$\nabla^2 \phi = 4\pi G a^2 \bar{\rho} \delta,$	Poisson Equation

• Solve the equations perturbatively in powers of the **density field**, δ

$$\begin{split} \delta(\mathbf{k},\tau) &= D(\tau)\delta^{(1)}(\mathbf{k}) + D^2(\tau)\delta^{(2)}(\mathbf{k}) + D^3(\tau)\delta^{(3)}(\mathbf{k}) + \dots \\ & \uparrow \\ \text{Growth factor} & \text{2nd order density field} \end{split}$$

e.g. Bernardeau+02

Standard Perturbation Theory

• The solution is a **linear power spectrum** plus **loop corrections**

$$P(\mathbf{k},\tau) = P_L(\mathbf{k},\tau) + P_{22}(\mathbf{k},\tau) + 2P_{13}(\mathbf{k},\tau) + \dots$$

Linear One-loop

• Loop corrections are **integrals** over powers of the linear power spectrum

Standard Perturbation Theory

Why does SPT fail?

- The expansion parameter, δ, is not small
- 2. Matter is not a **perfect fluid**
- The loop integrals can diverge
 No UV protection

Using Quijote simulations (Villaescusa-Navarro+19) and CLASS-PT (Ivanov+20)

• Treat matter as an **imperfect** fluid, described by the Boltzmann equation, written in terms of the **smoothed** density field

$$\begin{split} \dot{\delta}_{\Lambda} + \nabla \cdot \left[(1 + \delta_{\Lambda} \mathbf{v}_{\Lambda}) \right] &= 0 \\ \dot{\mathbf{v}}_{\Lambda} + \left(\mathbf{v}_{\Lambda} \cdot \nabla \right) \mathbf{v}_{\Lambda} &= -\mathcal{H} \mathbf{v}_{\Lambda} - \nabla \phi_{\Lambda} \left[-\frac{1}{\rho_{\Lambda}} \nabla \underline{\underline{\tau}} \right] \end{split}$$

This adds a **stress-tensor**, **τ**, defined by:

$$\tau^{ji} = -c_s^2 \rho \delta^{ij} + \eta \left(\partial^j v^i + \partial^i v^j \right) + \dots$$

Baumann+10, Carrasco+12

• At next-to-leading order:

$$P(k) = P_{\rm lin}(k) + P_{22,\Lambda}(k) + 2P_{13,\Lambda}(k) - 2c_{\rm s,\Lambda}^2 k^2 P_{\rm lin}(k)$$

Counterterm

- The counterterm is the backreaction of **small-scale** physics on large-scale modes. It **must** be measured from simulations.
 - An analogy: the **viscosity** in fluid dynamics

Baumann+10, Carrasco+12

• Equivalently, we can restrict to large-scales in **renormalization**

But this dependence is exactly captured by the **counterterm**!

• EFT provides a much better fit to data than SPT, since we include the non-ideal fluid contributions

• Extending to 2-loop order improves this further

Using Quijote simulations (Villaescusa-Navarro+19) and CLASS-PT (Ivanov+20)

IR Resummation

- At late times, particles have **large displacements** that cannot be treated perturbatively.
- This **damps** the BAO wiggles
- The contributions can be **resummed**, e.g.

$$P_L(k) \rightarrow P_{nw}(k) + P_w(k)e^{-k^2\Sigma^2}$$

 $r [h^{-1}Mpc]$

Comparison to HaloFit

<u>HaloFit</u>

- Calibrated from N-body simulations
- Extends further into non-linear regime

But

- Too wiggly!
- Only ~ 5% accurate

Using Quijote simulations (Villaescusa-Navarro+19) and CLASS-PT (Ivanov+20)

Biased Tracers

The simple approach: expand the galaxy overdensity in powers of δ :

$$\delta_g(\mathbf{x}) = b_1 \delta(\mathbf{x}) + \frac{b_2}{2} \delta^2(\mathbf{x}) + \frac{b_3}{6} \delta^3(\mathbf{x}) + \dots$$

The EFT approach: include all possible parameters allowed by symmetry

$$\delta_g = b_1 \delta + \epsilon + \frac{b_2}{2} \delta^2 + b_{\mathcal{G}_2} \mathcal{G}_2 + \frac{b_3}{6} \delta^3 + b_{\delta \mathcal{G}_2} \delta \mathcal{G}_2 + b_{\mathcal{G}_3} \mathcal{G}_3 + b_{\Gamma_3} \Gamma_3 + R_*^2 \partial^2 \delta$$

with density operators, tidal operators, stochastic operators, and non-local operators (all integrated over a lightcone)

Redshift Space

Galaxy surveys infer distances

$$\delta_r(\vec{k}) = \delta(\vec{k}) + \int d^3x \ e^{-i\vec{k}\cdot\vec{x}} \left(\exp\left[-i\frac{k_z}{aH}v_z(\vec{x})\right] - 1 \right) (1 + \delta(\vec{x}))$$

Exact mapping. Smooth it \rightarrow get new contributions (+2 at one-loop order) Caveat: fingers - of - God - low k_NL

Comparison to TNS (~ halofit)

- Doesn't include corrections beyond perfect fluids
- Partly resums SPT contributions does not help if the theory is wrong
- Doesn't capture the BAO fits it only because of accidental shape of LCDM spectrum
- Doesn't capture fingers-of-God large biases in redshift space for DM
- Cannot be precise more than ~3%
- Field level (no summary statistic) stringent test. Only the linear part is OK

The Full Model

The 1-loop model has free parameters:

$$\{b_1, b_2, b_{\mathcal{G}_2}, c_{s,0}, c_{s,2}, b_4, P_{\text{shot}}\}$$

Sub-percent accurate in the mildly non-linear regime

Nishimichi+20

The Full Model

- Impact of *bias* & *redshift-space models* on the halo power spectrum.
- We develop the advective bias model.
- We use **EFT** to account for non-linear physics.
- WizCOLA simulation.
- Risk of **over-fitting**:
 - Bayesian Information criterian
 - Ensemble average.

	BIC	Min χ2/dof	Δχ2(%)
Linear+ KaiserTree	11.1	1.1	1.8
Linear+Kaiser Halo	11.1	1.0	3.1
Coev+Kaiser Halo	16.6	1.0	3.2
Coev+SPT	16.6	1.0	2.3
Coev+EFT	44.2	1.1	6.9
M&Roy+ KaiserTree	27.6	1.0	2.8
Advect+SPT	38.7	1.1	5.1
Advect+EFT	66.4	1.2	6.0

CLASS-PT

- Based on CLASS
- Computes the 1-loop PT integrals in < 1 s
- Includes all effects:
 - IR Resummation
 - Loop integrals
 - Biased tracers
 - Redshift-space distortions
 - Alcock-Pacyznski effects
- Can be interfaced with MontePython for MCMC sampling
- Tutorial ?

Beyond LCDM

No problem to include beyond LCDM

- Any model that does not alter non-linear interactions done
 (a) explicit time-dependence (very tiny effect)
- Modified gravity worked out, but not included in the code yet (MG changes the non-linear interactions (`kernels')