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1. Why is this important?
Theory versus data

• How to compare/falsify my theory with reality?


• Statistics is the mathematical tool 


• To compare my theory with data


• To separate good theories from bad theories


• Note: uncertainties are crucial!


• Important: cosmology is an interesting case where there is only one 
experiment! We cannot reproduce lots of universes in our lab!!!
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• “An event’s probability is a measure of an individual’s degree of belief in 
assessing the uncertainty” 

• There are other definitions, e.g. frequentists. JACS session 03/12/2020.


• Given the data, what is the probability of the coin being 
biased?

2.1. Bayesian definition
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Data: HHH

How confident are you that the coin is fair?

Model:  the coin is biased towards head




 the coin always shows tails

 the coin always shows head

bh ∈ [0,1]
bh = 0
bh = 1

P(model |data) = P(M |d) = P(bh |d)

2. Probability



• Given the data, what is the probability of the coin being biased?


More data can change our degree of belief     


But so other pieces of information: origin of coin

2.2. How to assess probability?
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Model:  
bh ∈ [0,1]

P(bh |d)

2. Probability

Uncertainty

Best estimate

Data: HHH

How confident are you that the coin is fair?



• Bayes’ Theorem tell us how to change our 
degree of belief in a model based on new data.





•  Posterior probability of the model


•  Data likelihood


•  Prior probability of the model


•  evidence

P(M |d) =
P(d |M)P(M)

P(d)

P(M |d)

P(d |M)

P(M)

P(d)

2.3. Bayes’ Theorem
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2. Probability

• In cosmology we use Bayes’ theorem to infer the 
parameters of our model.





•  Posterior probability distribution for 
values of parameters within our model


•  Data likelihood


•  Prior probability distribution for 
parameter values


• For now, forget about the evidence 

⃗θ = {θ1, . . . }

P( ⃗θ |d, M) ∝ P(d | ⃗θ , M)P( ⃗θ |M)

P( ⃗θ |d, M)

P(d | ⃗θ , M)

P( ⃗θ |M)

P(d)



• Likelihood, , is the probability to observe data points  with these values


• It tells you how the errors are distributed


• Gaussian distribution when you do not know any better 





• Give a score to each potential set of parameters : the higher the score (likelihood), the 
closer to real data

P(d | ⃗θ , M) di

P(d | ⃗θ , M) = e−χ2/2

⃗θ

2.4. Choosing a likelihood
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2. Probability
P( ⃗θ |d, M) ∝ P(d | ⃗θ , M)P( ⃗θ |M)

χ2 = ∑
ij

( f( ⃗θ i) − di)C−1
ij ( f( ⃗θ j) − dj)

•  predicted values of data points in a model with 
particular parameters


•  vector of observed data points

•  Inverse covariance matrix, correlations between data 

points (  variance)

f( ⃗θ )i

di
C−1

ij
Cii = σ2



• Prior, , is the initial information about your model


• It is similar to setting your initial conditions for a set of differential equations.


• It is subjective and free for you to choose.


• As data improves, the posterior converges to the same distribution regardless the prior.


• Uniform/flat priors, when you know nothing a priori


P( ⃗θ |M)

2.5. The prior
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2. Probability
P( ⃗θ |d, M) ∝ P(d | ⃗θ , M)P( ⃗θ |M)



3. Contourplots
3.1. Parameters are correlated

• Corner plots show the one and two dimensional 
projections of the posterior probability 
distribution of the parameters.


• It is useful because it shows all the 
covariances/correlations between parameters.


• Levels of confidence: 66%, 95%, 99%.


• Which are the best parameters?


• To get uncertainties in one single parameter, we 
marginalise over the others


P(θ1 |M) = ∫ dθ2P(θ1, θ2 |M)

Example: model with three parameters

Software: emcee
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P( ⃗θ |d, M)



3. Contourplots
3.2. Markov Chain Monte Carlo methods

• How do we get these contour plots of posterior probability?


• Use likelihood to randomly walk around the values of parameters .


• Many sampling algorithms (e.g. MCMC) design to do this efficiently.


• They use random walks algorithms.


• After a number of steps, we make a histogram.


• These are the probability contours!

⃗θ

Example: model with three parameters

Software: emcee
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P( ⃗θ |d, M)



4. Model comparison
4.1. The evidence

• As well as estimating parameters within one model


• We can compare different models.


• The evidence or marginal posterior for two different models



P(d, M0) = ∫ d ⃗θ P(d | ⃗θ , M0)P( ⃗θ |M0)

P(d, M1) = ∫ d ⃗θ P(d | ⃗θ , M1)P( ⃗θ |M1)
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P( ⃗θ |d, M) =
P(d | ⃗θ , M)P( ⃗θ |M)

P(d)

Which model is best? 
Press-Schechter or Sheth-Tormen 

Data: MICE sims



4. Model comparison
4.2. The Bayes factor

• The log of the ratio                                                    


• Jeffrey’s scale to assess the strength of evidence for model .


B01 =
P(d, M1)
P(d, M0)

M1
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4. Task
Learn to use emcee

• Go to emcee documentation page https://emcee.readthedocs.io/en/stable/


• Install emcee following the installation guidelines


• Read the tutorials/Quickstart and reproduce their example in “Fitting a model to data”


• Together: Explain this example in our next meeting 27/11/2020 at 2.30 pm. 


• 5-min talks: 


• emcee 


• MCMC methods


Good luck!!! We are almost there!
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https://emcee.readthedocs.io/en/stable/

