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1. Why is this important?

Theory versus data

 How to compare/falsify my theory with reality?

e Statistics is the mathematical tool

P(k) (Mpc? [h3)

 [o compare my theory with data

* Jo separate good theories from bad theories

e Note: uncertainties are crucial!

k (h/Mpc)

* |mportant: cosmology is an interesting case where there is only one
experiment! We cannot reproduce lots of universes in our lab!!!



2. Probability

2.1. Bayesian definition

® “An event's probability is a measure of an individual’s degree of belief in
assessing the uncertainty”

* There are other definitions, e.g. frequentists. JACS session 03/12/2020.
* Given the data, what is the probability of the coin being

' ?
blased ) Model: the coin is biased towards head
b, € [0,1]
b, = 0 the coin always shows tails
b, = 1 the coin always shows head
Data: HHH — —
How confident are you that the coin is fair? P(mOdel ‘ data) T P(M ‘ d) T P(bh ‘ d)



2. Probability

2.2. How to assess probability?

. . ) o P(b,|d)
* Given the data, what is the probability of the coin being biased?

BEST ESTIMATE

-~ From joke shop
From Bank

- Few data
Many data

Model: b, € [0,1]

A

Probability given data, P(bx|d)
> \
Probability given data, P(bx|d)
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Data: HHH More data can change our degree of belief

How confident are you that the coin is fair? _ , _ o _
But so other pieces of information: origin of coin



2. Probability

2.3. Bayes’ Theorem

 Bayes’ Theorem tell us how to change our

degree of belief in a model based on new data.

P(d| M)P(M)

P(M|d) = P

« P(M|d) Posterior probability of the model
« P(d|M) Data likelihood
« P(M) Prior probability of the model

« P(d) evidence

* In cosmology we use Bayes’ theorem to infer the
parameters 6 = {0, ... }of our model.

P(O|d.M)x P(d| 0,M)P(E |M)

. P(?\ d, M) Posterior probability distribution for
values of parameters within our model

—

« P(d| 0,M) Data likelihood

. P(?\ M) Prior probability distribution for
parameter values

» For now, forget about the evidence P(d)



2. Probability

2.4. Choosing a likelihood P(O|d. M) x P(d| 6. MP(O | M)

—>

» Likelihood, P(d| 6, M), is the probability to observe data points d; with these values

* |t tells you how the errors are distributed

* (Gaussian distribution when you do not know any better

—v*/2
Pd| 6. M) =ec -
« f(0), predicted values of data points in a model with

particular parameters
» d; vector of observed data points

2 — > _1 —_—
A = Z (f ( 0 i) o dl) Cij (f ( 0 j) — d]) o CZ-J_. I inverse covariance matrix, correlations between data
ij points (C;; = ¢ variance)

—

» Give a score to each potential set of parameters 6 : the higher the score (likelihood), the
closer to real data



2. Probability

2.5. The prior P(O|d. M) x P(d| 8,MP(O | M)

e Prior, P(0 | M), is the initial information about your model
|t is similar to setting your initial conditions for a set of differential equations.

* |t is subjective and free for you to choose.

e As data improves, the posterior converges to the same distribution regardless the prior.

* Uniform/flat priors, when you know nothing a priori

Prior, P(bs|M)
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3. Contourplots

P(6 |d, M)
3.1. Parameters are correlated
Example: model with three parameters
Software: emcee
* Corner plots show the one and two dimensional
projections of the posterior probability S -
distribution of the parameters. 5
<0.
e |t is useful because it shows all the a 2]
covariances/correlations between parameters. N
b -
» |Levels of confidence: 66%, 95%, 99%. kol
Q
 Which are the best parameters? Qrb _
* Jo get uncertainties in one single parameter, we %/pr = d_/\ (G
marginalise over the others =77, - .
NS N
N

N

PO, |M) = | do,P6,,0,|M A S A G S

(6, | M) J ,P(0,,0,| M) D E L 2P P (P
/ / / /

RNt b log(f)



3. Contourplots
3.2. Markov Chain Monte Carlo methods

« How do we get these contour plots of posterior probability?

—

« Use likelihood to randomly walk around the values of parameters 6.

 Many sampling algorithms (e.g. MCMC) design to do this efficiently.

* They use random walks algorithms.

« After a number of steps, we make a histogram. - fi@

* These are the probabillity contours!

IR PR
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4. Model comparison

4.1. The evidence P(d| 6., M)P(O | M)

P(O|d, M) = o

* As well as estimating parameters within one model
 \WWe can compare different models.

* The evidence or marginal posterior for two different models

P(d, M,) = Jd?P(d 10, M)P(0 | M,)

P(d,M,) = Jd?P(d |0, M)P(0 |M,)
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4. Model comparison
4.2. The Bayes factor

P(d,M,)
P(d, M,)

. Thelog of the ratio By =

» Jeffrey’s scale to assess the strength of evidence for model M.

InB relative odds fav%fgesagﬁsel’s Interpretation
<1.0 < 31 < 0.750 oo

< 2.5 < 12:1 0.923 weak

< 0.0 < 150:1 0.993 moderate
> 5.0 | > 150:1 | > 0.993 strong

11



4. Task

Learn to use emcee

* (Go to emcee documentation page https.//emcee.readthedocs.io/en/stable/

* |nstall emcee following the installation guidelines
* Read the tutorials/Quickstart and reproduce their example in “Fitting a model to data”

* Together: Explain this example in our next meeting 27/11/2020 at 2.30 pm.

e 5-min talks:
* emcee

e« MCMC methods

Good luck!!l We are almost there!
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https://emcee.readthedocs.io/en/stable/

